Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unknown animals nearly invisible but yet there

22.03.2011
Bryozoans (moss animals) are a group of aquatic invertebrates that are found in great variety throughout the world, with well over 100 species in Sweden alone. Yet little is known about them. Researchers at the University of Gothenburg have now studied Swedish bryozoan species using DNA techniques.

“There are currently over 6 000 known species of Bryozoa. Earlier studies were based on visible characteristics of these animals, which is not sufficient to decide how the species are related to each other. To understand the evolution of bryozoans and how they are related to other animals, it is necessary to use molecular data, that’s to say DNA,” says Judith Fuchs of the Department of Zoology at the University of Gothenburg.

When Bryozoa were discovered in the 16th century, they were regarded as plants. Later on they were found to have a nervous system, muscles and an intestinal system and were classified as animals. On their own, bryozoans are barely visible to the naked eye, but like coral animals all bryozoans build colonies that reach several centimetres in size and some species build colonies of over 30cm.

In her thesis, Fuchs has studied the evolution and relationships of Bryozoa using molecular data (DNA) from more than 30 bryozoan species, most collected in Sweden. The results show that this animal group developed from a common ancestor that probably lived in the sea. Two groups of Bryozoa evolved from this common ancestor: a group that stayed in the marine environment and another that evolved in freshwater. The DNA studies of the larval stage of Bryozoa can also contribute to a better understanding of the evolution of life cycles and larval stages of other multicellular animals.

Together with her supervisor, Matthias Obst, over a period of four years she has also taken part in the marine inventory of the Swedish Species Project along the west coast of Sweden. The collection of all marine bottom-living animals is based on more than 500 samples from 400 locations.

“We found as many as 120 marine bryozoan species in our waters, and many of them had not been previously known in Sweden. We also found a completely new species of Bryozoa. This is a very small bryozoan with characteristic spikes on its surface, which I have described in my thesis.”

To date, 45 per cent of the bryozoans collected in the inventory have been determined.

“Sweden has a very rich bryozoan fauna. On your next trip to the beach you might perhaps take a closer look at seaweed or pebbles. If you see a white covering with small holes in it, you have found a bryozoan colony for yourself.”

The thesis New Insights into the Evolution of Bryozoa - An Integrative Approach was publicly defended on 11 March. Supervisor: Matthias Obst, PhD, and Professor Per Sundberg.

Journal: Molecular Phylogenetics and Evolution 2010, 56:370-379 Author: Fuchs J, Iseto T, Hirose M, Sundberg P, Obst M

Title: The first internal molecular phylogeny of the animal phylum Entoprocta (Kamptozoa)

For further information please contact:
Judith Fuchs
Mobile: +46 (0)76 272 8443
judith.fuchs@zool.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://hdl.handle.net/2077/24283

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>