Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Tennessee professor discovers how microbes survive at bare minimum

28.03.2013
Research finds archaea eats protein

Beneath the ocean floor is a desolate place with no oxygen and sunlight. Yet microbes have thrived in this environment for millions of years.


This is an image of archaea.
Credit: Richard Kevorkian, University of Tennessee

Scientists have puzzled over how these microbes survive, but today there are more answers.

A study led by Karen Lloyd, a University of Tennessee, Knoxville, assistant professor of microbiology, reveals that these microscopic life-forms called archaea slowly eat tiny bits of protein. The study was released today in Nature.

The finding has implications for understanding the bare minimum conditions needed to support life.

"Subseafloor microbes are some of the most common organisms on earth," said Lloyd. "There are more of them than there are stars or sand grains. If you go to a mud flat and stick your toes into the squishy mud, you're touching these archaea. Even though they've literally been right under our noses for all of human history, we've never known what they're doing down there."

Archaea are one of three life forms on earth, including bacteria and eukarya cells.

Scientists are interested in archaea's extreme way of life because it provides clues about the absolute minimum conditions required to sustain life as well as the global carbon cycle.

"Scientists had previously thought that proteins were only broken down in the sea by bacteria," said Lloyd. "But archaea have now turned out to be important new key organisms in protein degradation in the seabed."

Proteins make up a large part of the organic matter in the seabed, the world's largest deposit of organic carbon.

To reveal the cells' identities and way of life, Lloyd and her colleagues collected ocean mud containing the archaea cells from Aarhus Bay, Denmark. Then they pulled out four individual cells and sequenced their genomic DNA to discover the presence of the extracellular protein-degrading enzymes predicted in those genomes.

"We were able to go back to the mud and directly measure the activity of these predicted enzymes," said Andrew Steen, another UT researcher and coauthor of the study. "I was shocked at how high the activities were."

This novel method opens the door for new studies by microbiologists. Scientists have been unable to grow archaea in the laboratory, limiting their studies to less than one percent of microorganisms. This new method allows scientists to study microorganisms directly from nature, opening up the remaining 99 percent to research.

Lloyd collaborated with other researchers from UT, as well as, Aarhus University in Denmark, Bigelow Laboratory for Ocean Sciences in Maine, Ribocon GmbH in Germany, and the Max Planck Institute for Marine Biology in Germany.

Whitney Heins | EurekAlert!
Further information:
http://www.utk.edu

More articles from Life Sciences:

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>