Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis


Lichens have long been a classic example of symbiosis. Now, that dualistic relationship between an alga and a fungus is being challenged. Together with colleagues from the USA and Sweden, researchers of the University of Graz have shown that some of the world's most common lichen species are actually composed of not one but two fungi. These findings will be the cover story in the July 29th issue of the journal Science.

Lichens, a mutually helpful relationship between an alga and a fungus, have long been a classic example of symbiosis. Now, that well-known dualistic relationship is being challenged. Together with colleagues from the USA and Sweden, researchers of the University of Graz have shown that some of the world's most common lichen species are actually composed of not one but two fungi. These findings are published online on July 22nd and will be the cover story in the July 29th issue of the journal Science.

The lichen Vulpicida canadensis is common on tree barks in Northern America. As scientists have found out, it consists of an alga and two fungi.

Tim Wheeler/

Thanks to recent advances in genomic sequencing, Toby Spribille, the project leader and a postdoctoral researcher working with Helmut Mayrhofer at the Institute of Plant Sciences in Graz, showed that many lichens contain a previously unknown second fungus, identified as a form of yeast. He discovered the new fungus when he set out to answer why one of two closely related lichen species, common in the western United States, contains substances toxic to mammals while the other does not.

Using short pieces of "barcode" DNA they obtained from their genome sequencing, the researchers began to check other lichens from all over the world for the presence of the yeast. It turned out that the second fungus was everywhere: the research team found it in common lichens from Antarctica to Japan, and from South America to the highlands of Ethiopia.

The fungus had been overlooked by over one hundred years of microscopic studies. Spribille teamed up with researchers in Sweden and the Microscopy Core Facility at the University of Graz Institute for Molecular Biosciences to make the yeasts visible using fluorescent labeling techniques.

"This is a pretty fundamental shake-up of what we thought we knew about the lichen symbiosis," says Spribille. "It's easy to see how it was overlooked. But now it really does force a reassessment of basic assumptions about how lichens are formed and who does what in the symbiosis."

The research team now hope to gain a better understanding of the interactions of the two fungi as a way to understand how symbiosis works. "Basically in symbiosis two organisms get past the urge to compete or repel each other and together form something that wasn't there before", Spribille explains. "Figuring out how they do this could give us fundamental insight into how species cooperate at a cellular level".

The Institute of Plant Sciences of the University of Graz is a leading centre in the lichen symbiosis research worldwide. The analyses were realised together with the Institute of Molecular Biosciences and were financed by the Austrian Science Fund and through collaboration with the University of Montana, Uppsala University and Purdue University.

Toby Spribille, Veera Tuovinen, Philipp Resl, Dan Vanderpool, Heimo Wolinski, M. Catherine Aime, Kevin Schneider, Edith Stabentheiner, Merje Toome-Heller, Göran Thor, Helmut Mayrhofer, Hanna Johannesson, John P. McCutcheon: „Basidiomycete yeasts in the cortex of ascomycete macrolichens" Science (online July 22, 2016).

Dr. Toby Spribille
Institute of Plant Sciences of the University of Graz
Tel.: +43 (0) 660/839 2918

Mag. Gudrun Pichler | Karl-Franzens-Universität Graz
Further information:

Further reports about: BioSciences Plant Sciences cellular level fungus genome sequencing symbiosis

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>



Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

More VideoLinks >>>