Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016

Lichens have long been a classic example of symbiosis. Now, that dualistic relationship between an alga and a fungus is being challenged. Together with colleagues from the USA and Sweden, researchers of the University of Graz have shown that some of the world's most common lichen species are actually composed of not one but two fungi. These findings will be the cover story in the July 29th issue of the journal Science.

Lichens, a mutually helpful relationship between an alga and a fungus, have long been a classic example of symbiosis. Now, that well-known dualistic relationship is being challenged. Together with colleagues from the USA and Sweden, researchers of the University of Graz have shown that some of the world's most common lichen species are actually composed of not one but two fungi. These findings are published online on July 22nd and will be the cover story in the July 29th issue of the journal Science.


The lichen Vulpicida canadensis is common on tree barks in Northern America. As scientists have found out, it consists of an alga and two fungi.

Tim Wheeler/timwheelerphotography.com

Thanks to recent advances in genomic sequencing, Toby Spribille, the project leader and a postdoctoral researcher working with Helmut Mayrhofer at the Institute of Plant Sciences in Graz, showed that many lichens contain a previously unknown second fungus, identified as a form of yeast. He discovered the new fungus when he set out to answer why one of two closely related lichen species, common in the western United States, contains substances toxic to mammals while the other does not.

Using short pieces of "barcode" DNA they obtained from their genome sequencing, the researchers began to check other lichens from all over the world for the presence of the yeast. It turned out that the second fungus was everywhere: the research team found it in common lichens from Antarctica to Japan, and from South America to the highlands of Ethiopia.

The fungus had been overlooked by over one hundred years of microscopic studies. Spribille teamed up with researchers in Sweden and the Microscopy Core Facility at the University of Graz Institute for Molecular Biosciences to make the yeasts visible using fluorescent labeling techniques.

"This is a pretty fundamental shake-up of what we thought we knew about the lichen symbiosis," says Spribille. "It's easy to see how it was overlooked. But now it really does force a reassessment of basic assumptions about how lichens are formed and who does what in the symbiosis."

The research team now hope to gain a better understanding of the interactions of the two fungi as a way to understand how symbiosis works. "Basically in symbiosis two organisms get past the urge to compete or repel each other and together form something that wasn't there before", Spribille explains. "Figuring out how they do this could give us fundamental insight into how species cooperate at a cellular level".

The Institute of Plant Sciences of the University of Graz is a leading centre in the lichen symbiosis research worldwide. The analyses were realised together with the Institute of Molecular Biosciences and were financed by the Austrian Science Fund and through collaboration with the University of Montana, Uppsala University and Purdue University.

Publication:
Toby Spribille, Veera Tuovinen, Philipp Resl, Dan Vanderpool, Heimo Wolinski, M. Catherine Aime, Kevin Schneider, Edith Stabentheiner, Merje Toome-Heller, Göran Thor, Helmut Mayrhofer, Hanna Johannesson, John P. McCutcheon: „Basidiomycete yeasts in the cortex of ascomycete macrolichens" Science (online July 22, 2016).

Contact:
Dr. Toby Spribille
Institute of Plant Sciences of the University of Graz
Tel.: +43 (0) 660/839 2918
E-Mail: toby.spribille@mso.umt.edu

Mag. Gudrun Pichler | Karl-Franzens-Universität Graz
Further information:
http://www.uni-graz.at

Further reports about: BioSciences Plant Sciences cellular level fungus genome sequencing symbiosis

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>