Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016

Lichens have long been a classic example of symbiosis. Now, that dualistic relationship between an alga and a fungus is being challenged. Together with colleagues from the USA and Sweden, researchers of the University of Graz have shown that some of the world's most common lichen species are actually composed of not one but two fungi. These findings will be the cover story in the July 29th issue of the journal Science.

Lichens, a mutually helpful relationship between an alga and a fungus, have long been a classic example of symbiosis. Now, that well-known dualistic relationship is being challenged. Together with colleagues from the USA and Sweden, researchers of the University of Graz have shown that some of the world's most common lichen species are actually composed of not one but two fungi. These findings are published online on July 22nd and will be the cover story in the July 29th issue of the journal Science.


The lichen Vulpicida canadensis is common on tree barks in Northern America. As scientists have found out, it consists of an alga and two fungi.

Tim Wheeler/timwheelerphotography.com

Thanks to recent advances in genomic sequencing, Toby Spribille, the project leader and a postdoctoral researcher working with Helmut Mayrhofer at the Institute of Plant Sciences in Graz, showed that many lichens contain a previously unknown second fungus, identified as a form of yeast. He discovered the new fungus when he set out to answer why one of two closely related lichen species, common in the western United States, contains substances toxic to mammals while the other does not.

Using short pieces of "barcode" DNA they obtained from their genome sequencing, the researchers began to check other lichens from all over the world for the presence of the yeast. It turned out that the second fungus was everywhere: the research team found it in common lichens from Antarctica to Japan, and from South America to the highlands of Ethiopia.

The fungus had been overlooked by over one hundred years of microscopic studies. Spribille teamed up with researchers in Sweden and the Microscopy Core Facility at the University of Graz Institute for Molecular Biosciences to make the yeasts visible using fluorescent labeling techniques.

"This is a pretty fundamental shake-up of what we thought we knew about the lichen symbiosis," says Spribille. "It's easy to see how it was overlooked. But now it really does force a reassessment of basic assumptions about how lichens are formed and who does what in the symbiosis."

The research team now hope to gain a better understanding of the interactions of the two fungi as a way to understand how symbiosis works. "Basically in symbiosis two organisms get past the urge to compete or repel each other and together form something that wasn't there before", Spribille explains. "Figuring out how they do this could give us fundamental insight into how species cooperate at a cellular level".

The Institute of Plant Sciences of the University of Graz is a leading centre in the lichen symbiosis research worldwide. The analyses were realised together with the Institute of Molecular Biosciences and were financed by the Austrian Science Fund and through collaboration with the University of Montana, Uppsala University and Purdue University.

Publication:
Toby Spribille, Veera Tuovinen, Philipp Resl, Dan Vanderpool, Heimo Wolinski, M. Catherine Aime, Kevin Schneider, Edith Stabentheiner, Merje Toome-Heller, Göran Thor, Helmut Mayrhofer, Hanna Johannesson, John P. McCutcheon: „Basidiomycete yeasts in the cortex of ascomycete macrolichens" Science (online July 22, 2016).

Contact:
Dr. Toby Spribille
Institute of Plant Sciences of the University of Graz
Tel.: +43 (0) 660/839 2918
E-Mail: toby.spribille@mso.umt.edu

Mag. Gudrun Pichler | Karl-Franzens-Universität Graz
Further information:
http://www.uni-graz.at

Further reports about: BioSciences Plant Sciences cellular level fungus genome sequencing symbiosis

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>