Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Minnesota engineering researcher finds new way to fight antibiotic-resistant bacteria

23.11.2010
Treating municipal wastewater solids at higher temperatures proves effective

New findings by civil engineering researchers in the University of Minnesota's College of Science and Engineering shows that treating municipal wastewater solids at higher temperatures may be an effective tool in the fight against antibiotic-resistant bacteria.

Heating the solid waste to 130 degrees Fahrenheit (55 degrees Celsius) was particularly effective in eliminating the genes that confer antibiotic resistance. These genes are used by bacteria to become resistant to multiple antibiotics, which are then known as "superbacteria" or "superbugs."

The research paper was recently published in Environmental Science & Technology, a journal of the American Chemical Society and highlighted in the society's weekly magazine Chemical & Engineering News.

Antibiotics are used to treat numerous bacterial infections, but the ever-increasing presence of antibiotic-resistant bacteria has raised substantial concern about the future effectiveness of antibiotics.

"The current scientific paradigm is that antibiotic resistance is primarily caused by antibiotic use, which has led to initiatives to restrict antibiotic prescriptions and curtail antibiotic use in agriculture," said civil engineering associate professor Timothy LaPara, an expert in both wastewater treatment and microbiology who led the new University of Minnesota study. "Our research is one of the first studies that considers a different approach to thwarting the spread of antibiotic resistance by looking at the treatment of municipal wastewater solids."

Antibiotic resistant bacteria develop in the gastrointestinal tracts of people taking antibiotics. These bacteria are then shed during defecation, which is collected by the existing sewer infrastructure and passed through a municipal wastewater treatment facility. The majority of wastewater treatment plants incubate the solid waste, called sludge, in a "digester" that decomposes organic materials. Digesters are often operated at 95 to 98 degrees Fahrenheit (35 to 37 degrees Celsius).

"Many digesters are operated at our body temperature, which is perfect for resistant bacteria to survive and maybe even grow," LaPara said.

Lab research by LaPara and his graduate student David Diehl shows that anaerobic digestion of municipal wastewater solids at high temperatures (as high as 130 degrees Fahrenheit or 55 degrees Celsius) is capable of destroying up to 99.9 percent of various genes that confer resistance in bacteria. In contrast, conventional anaerobic digestion (operated at 95 to 98 degrees Fahrenheit or about 37 degrees Celsius) demonstrated only a slight ability to eliminate the same set of genes.

"Our latest research suggests that high temperature anaerobic digestion offers a novel approach to slow the proliferation of antibiotic resistance." LaPara said. "This new method could be used in combination with other actions, like limiting the use of antibiotics, to extend the lifespan of these precious drugs."

LaPara also pointed out that raising the temperature of anaerobic digestion at wastewater treatment plants is not cost-prohibitive because the digesting bacteria produce methane gas that can be used to heat the reactor.

The Minnesota Environmental and Natural Resources Trust Fund financially supported LaPara's recent research. LaPara has secured a grant from the National Science Foundation to continue his research examining other technologies to eliminate antibiotic-resistant bacteria in wastewater solids.

To view the most recent research report published in Environmental Science & Technology, visit http://z.umn.edu/lapara.

Rhonda Zurn | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>