Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Minnesota engineering researcher finds new way to fight antibiotic-resistant bacteria

Treating municipal wastewater solids at higher temperatures proves effective

New findings by civil engineering researchers in the University of Minnesota's College of Science and Engineering shows that treating municipal wastewater solids at higher temperatures may be an effective tool in the fight against antibiotic-resistant bacteria.

Heating the solid waste to 130 degrees Fahrenheit (55 degrees Celsius) was particularly effective in eliminating the genes that confer antibiotic resistance. These genes are used by bacteria to become resistant to multiple antibiotics, which are then known as "superbacteria" or "superbugs."

The research paper was recently published in Environmental Science & Technology, a journal of the American Chemical Society and highlighted in the society's weekly magazine Chemical & Engineering News.

Antibiotics are used to treat numerous bacterial infections, but the ever-increasing presence of antibiotic-resistant bacteria has raised substantial concern about the future effectiveness of antibiotics.

"The current scientific paradigm is that antibiotic resistance is primarily caused by antibiotic use, which has led to initiatives to restrict antibiotic prescriptions and curtail antibiotic use in agriculture," said civil engineering associate professor Timothy LaPara, an expert in both wastewater treatment and microbiology who led the new University of Minnesota study. "Our research is one of the first studies that considers a different approach to thwarting the spread of antibiotic resistance by looking at the treatment of municipal wastewater solids."

Antibiotic resistant bacteria develop in the gastrointestinal tracts of people taking antibiotics. These bacteria are then shed during defecation, which is collected by the existing sewer infrastructure and passed through a municipal wastewater treatment facility. The majority of wastewater treatment plants incubate the solid waste, called sludge, in a "digester" that decomposes organic materials. Digesters are often operated at 95 to 98 degrees Fahrenheit (35 to 37 degrees Celsius).

"Many digesters are operated at our body temperature, which is perfect for resistant bacteria to survive and maybe even grow," LaPara said.

Lab research by LaPara and his graduate student David Diehl shows that anaerobic digestion of municipal wastewater solids at high temperatures (as high as 130 degrees Fahrenheit or 55 degrees Celsius) is capable of destroying up to 99.9 percent of various genes that confer resistance in bacteria. In contrast, conventional anaerobic digestion (operated at 95 to 98 degrees Fahrenheit or about 37 degrees Celsius) demonstrated only a slight ability to eliminate the same set of genes.

"Our latest research suggests that high temperature anaerobic digestion offers a novel approach to slow the proliferation of antibiotic resistance." LaPara said. "This new method could be used in combination with other actions, like limiting the use of antibiotics, to extend the lifespan of these precious drugs."

LaPara also pointed out that raising the temperature of anaerobic digestion at wastewater treatment plants is not cost-prohibitive because the digesting bacteria produce methane gas that can be used to heat the reactor.

The Minnesota Environmental and Natural Resources Trust Fund financially supported LaPara's recent research. LaPara has secured a grant from the National Science Foundation to continue his research examining other technologies to eliminate antibiotic-resistant bacteria in wastewater solids.

To view the most recent research report published in Environmental Science & Technology, visit

Rhonda Zurn | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>