Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Minnesota engineering researcher finds new way to fight antibiotic-resistant bacteria

23.11.2010
Treating municipal wastewater solids at higher temperatures proves effective

New findings by civil engineering researchers in the University of Minnesota's College of Science and Engineering shows that treating municipal wastewater solids at higher temperatures may be an effective tool in the fight against antibiotic-resistant bacteria.

Heating the solid waste to 130 degrees Fahrenheit (55 degrees Celsius) was particularly effective in eliminating the genes that confer antibiotic resistance. These genes are used by bacteria to become resistant to multiple antibiotics, which are then known as "superbacteria" or "superbugs."

The research paper was recently published in Environmental Science & Technology, a journal of the American Chemical Society and highlighted in the society's weekly magazine Chemical & Engineering News.

Antibiotics are used to treat numerous bacterial infections, but the ever-increasing presence of antibiotic-resistant bacteria has raised substantial concern about the future effectiveness of antibiotics.

"The current scientific paradigm is that antibiotic resistance is primarily caused by antibiotic use, which has led to initiatives to restrict antibiotic prescriptions and curtail antibiotic use in agriculture," said civil engineering associate professor Timothy LaPara, an expert in both wastewater treatment and microbiology who led the new University of Minnesota study. "Our research is one of the first studies that considers a different approach to thwarting the spread of antibiotic resistance by looking at the treatment of municipal wastewater solids."

Antibiotic resistant bacteria develop in the gastrointestinal tracts of people taking antibiotics. These bacteria are then shed during defecation, which is collected by the existing sewer infrastructure and passed through a municipal wastewater treatment facility. The majority of wastewater treatment plants incubate the solid waste, called sludge, in a "digester" that decomposes organic materials. Digesters are often operated at 95 to 98 degrees Fahrenheit (35 to 37 degrees Celsius).

"Many digesters are operated at our body temperature, which is perfect for resistant bacteria to survive and maybe even grow," LaPara said.

Lab research by LaPara and his graduate student David Diehl shows that anaerobic digestion of municipal wastewater solids at high temperatures (as high as 130 degrees Fahrenheit or 55 degrees Celsius) is capable of destroying up to 99.9 percent of various genes that confer resistance in bacteria. In contrast, conventional anaerobic digestion (operated at 95 to 98 degrees Fahrenheit or about 37 degrees Celsius) demonstrated only a slight ability to eliminate the same set of genes.

"Our latest research suggests that high temperature anaerobic digestion offers a novel approach to slow the proliferation of antibiotic resistance." LaPara said. "This new method could be used in combination with other actions, like limiting the use of antibiotics, to extend the lifespan of these precious drugs."

LaPara also pointed out that raising the temperature of anaerobic digestion at wastewater treatment plants is not cost-prohibitive because the digesting bacteria produce methane gas that can be used to heat the reactor.

The Minnesota Environmental and Natural Resources Trust Fund financially supported LaPara's recent research. LaPara has secured a grant from the National Science Foundation to continue his research examining other technologies to eliminate antibiotic-resistant bacteria in wastewater solids.

To view the most recent research report published in Environmental Science & Technology, visit http://z.umn.edu/lapara.

Rhonda Zurn | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>