Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Michigan scientists discover bone marrow can harbor HIV-infected cells

09.03.2010
Targeting these reservoirs of latent cells may open door to new treatments

University of Michigan scientists have identified a new reservoir for hidden HIV-infected cells that can serve as a factory for new infections. The findings, which appear online March 7 in Nature Medicine, indicate a new target for curing the disease so those infected with the virus may someday no longer rely on AIDS drugs for a lifetime.

"Antiviral drugs have been effective at keeping the virus at bay. However once the drug therapy is stopped, the virus comes back," says senior author of the study Kathleen L. Collins, M.D., Ph.D., associate professor of both internal medicine and microbiology and immunology at the U-M Medical School.

In people infected with HIV (human immunodeficiency virus), the virus that causes AIDS, there's an unsolved problem with current anti-viral drugs. Though life-saving, they cannot root the virus out of the body. Infected cells are able to live on, undetected by the immune system, and provide the machinery for the virus to reproduce and spread.

Important new research by U-M has discovered that bone marrow, previously thought to be resistant to the virus, can contain latent forms of the infection. They are not affected by current anti-HIV drug regimens.

"This finding is important because it helps explain why it's hard to cure the disease," Collins says. "Ultimately to cure this disease, we're going to have to develop specific strategies aimed at targeting these latently infected cells."

"Currently people have to take anti-viral drugs for their entire life to control the infection," she says. "It would be easier to treat this disease in countries that don't have the same resources as we do with a course of therapy for a few months, or even years. But based on what we know now people have to stay on drugs for their entire life."

Using tissue samples, U-M researchers detected HIV genomes in bone marrow isolated from people effectively treated with antiviral drugs for more than six months.

While further studies are needed to demonstrate that stem cells can harbor the HIV virus, the study results confirm that HIV targets some long-lived progenitor cells, young cells that have not fully developed but mature into cells with special immune functions. When active infection occurs the toxic effects of the virus kill the cell even as the newly made viral particles spread the infection to new target cells.

"Our finding that HIV infects these cells has clear ramifications for HIV disease because some of these cells may be long-lived and could carry latent HIV for extended periods of time," she says. "These HIV cell reservoirs can be induced to generate new infections."

The new research gives a broader view of how HIV overwhelms the body's immune system and devastates its ability to regenerate itself.

Globally more than 30 million people are infected with HIV, including millions of children. Improvements have been made since the 1990s in the way the disease is treated that has led to an 85 percent to 90 percent reduction in mortality.

"Drugs now available are effective at treating the virus, making HIV more of a chronic disease than a death sentence," Collins says. "This has made a huge impact in quality of life, however only 40 percent of people worldwide are receiving anti-viral drugs and unfortunately that means that not everybody is benefiting."

Additional authors: Christoph C. Carter, Adewunmi Onafuwa-Nuga, Lucy A. McNamara, James Riddell IV, and Dale Bixby, all of U-M; and Michael R. Savona, University of Texas Health Science Center, San Antonio, Texas, formerly of U-M Heath System.

Funding: National Institutes of Health. The work of first author Carter was supported by the Wellcome Foundation, U-M Molecular Mechanisms in Microbial Pathogenesis Training Grant and a Rackham Predoctoral Fellowship, and McNamara's work was supported by a National Science Foundation Predoctoral Fellowship and a Bernard Maas Fellowship.

Reference: 10.1038/nm.2109

Resources:

National Institute of Allergy and Infectious Diseases HIV/AIDS Research Program http://www3.niaid.nih.gov/topics/HIVAIDS/

U-M Department of Microbiology and Immunology http://www.med.umich.edu/microbio/

U-M Department of Internal Medicine http://www.med.umich.edu/intmed/

Shantell M. Kirkendoll | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>