Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Michigan scientists discover bone marrow can harbor HIV-infected cells

09.03.2010
Targeting these reservoirs of latent cells may open door to new treatments

University of Michigan scientists have identified a new reservoir for hidden HIV-infected cells that can serve as a factory for new infections. The findings, which appear online March 7 in Nature Medicine, indicate a new target for curing the disease so those infected with the virus may someday no longer rely on AIDS drugs for a lifetime.

"Antiviral drugs have been effective at keeping the virus at bay. However once the drug therapy is stopped, the virus comes back," says senior author of the study Kathleen L. Collins, M.D., Ph.D., associate professor of both internal medicine and microbiology and immunology at the U-M Medical School.

In people infected with HIV (human immunodeficiency virus), the virus that causes AIDS, there's an unsolved problem with current anti-viral drugs. Though life-saving, they cannot root the virus out of the body. Infected cells are able to live on, undetected by the immune system, and provide the machinery for the virus to reproduce and spread.

Important new research by U-M has discovered that bone marrow, previously thought to be resistant to the virus, can contain latent forms of the infection. They are not affected by current anti-HIV drug regimens.

"This finding is important because it helps explain why it's hard to cure the disease," Collins says. "Ultimately to cure this disease, we're going to have to develop specific strategies aimed at targeting these latently infected cells."

"Currently people have to take anti-viral drugs for their entire life to control the infection," she says. "It would be easier to treat this disease in countries that don't have the same resources as we do with a course of therapy for a few months, or even years. But based on what we know now people have to stay on drugs for their entire life."

Using tissue samples, U-M researchers detected HIV genomes in bone marrow isolated from people effectively treated with antiviral drugs for more than six months.

While further studies are needed to demonstrate that stem cells can harbor the HIV virus, the study results confirm that HIV targets some long-lived progenitor cells, young cells that have not fully developed but mature into cells with special immune functions. When active infection occurs the toxic effects of the virus kill the cell even as the newly made viral particles spread the infection to new target cells.

"Our finding that HIV infects these cells has clear ramifications for HIV disease because some of these cells may be long-lived and could carry latent HIV for extended periods of time," she says. "These HIV cell reservoirs can be induced to generate new infections."

The new research gives a broader view of how HIV overwhelms the body's immune system and devastates its ability to regenerate itself.

Globally more than 30 million people are infected with HIV, including millions of children. Improvements have been made since the 1990s in the way the disease is treated that has led to an 85 percent to 90 percent reduction in mortality.

"Drugs now available are effective at treating the virus, making HIV more of a chronic disease than a death sentence," Collins says. "This has made a huge impact in quality of life, however only 40 percent of people worldwide are receiving anti-viral drugs and unfortunately that means that not everybody is benefiting."

Additional authors: Christoph C. Carter, Adewunmi Onafuwa-Nuga, Lucy A. McNamara, James Riddell IV, and Dale Bixby, all of U-M; and Michael R. Savona, University of Texas Health Science Center, San Antonio, Texas, formerly of U-M Heath System.

Funding: National Institutes of Health. The work of first author Carter was supported by the Wellcome Foundation, U-M Molecular Mechanisms in Microbial Pathogenesis Training Grant and a Rackham Predoctoral Fellowship, and McNamara's work was supported by a National Science Foundation Predoctoral Fellowship and a Bernard Maas Fellowship.

Reference: 10.1038/nm.2109

Resources:

National Institute of Allergy and Infectious Diseases HIV/AIDS Research Program http://www3.niaid.nih.gov/topics/HIVAIDS/

U-M Department of Microbiology and Immunology http://www.med.umich.edu/microbio/

U-M Department of Internal Medicine http://www.med.umich.edu/intmed/

Shantell M. Kirkendoll | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>