Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Maryland researchers discover possible drug targets for common non-Hodgkin's lymphoma

20.07.2011
Study finds novel interaction between 2 proteins that regulate cell growth

Researchers at the University of Maryland School of Medicine have discovered a novel interaction between two proteins involved in regulating cell growth that could provide possible new drug targets for treating diffuse large B-cell lymphoma, the most common type of non-Hodgkin's lymphoma.

In a study published online in Nature Communications, the scientists report that they have found a complex molecular and functional relationship between ERK (extracellular signal-regulated kinase), a protein that helps to regulate cell proliferation and survival, and CHK2 (checkpoint kinase 2), a protein that is involved in the cellular DNA damage response. They also demonstrated, for the first time, elevated levels of both proteins in diffuse large B-cell lymphoma cells, compared to non-cancerous cells.

Ronald B. Gartenhaus, M.D., associate professor of medicine at the University of Maryland School of Medicine and the senior author, says researchers found that CHK2 appears to regulate the activity of ERK, although the exact mechanism is not clear. "The two proteins physically interact, which was not known before, and we may be able to use this interaction for therapeutic advantage. We found that treating human B-cell lymphoma cells with both an ERK inhibitor inhibitor and a CHK2 inhibitor killed substantially more cancer cells than treating the cells with either drug alone," he says.

"Based on our findings, we believe that a combination therapy targeting both ERK and CHK2 could offer a potential new approach to treating diffuse large B-cell lymphoma," says Dr. Gartenhaus, who is co-leader of the Program in Molecular and Structural Biology at the University of Maryland Marlene and Stewart Greenebaum Cancer Center.

The drugs used to inhibit ERK and CHK2 caused the cancer cells to die through a process called apoptosis, or programmed cell death. Human cells normally self-destruct in a controlled manner, but cancer cells lose this ability and consequently grow uncontrollably.

E. Albert Reece, M.D., Ph.D., M.B.A., vice president of medical affairs at the University of Maryland and dean of the University of Maryland School of Medicine, says, "This is a very important discovery that may ultimately benefit patients with diffuse large B-cell lymphoma, a common hematological malignancy that can be difficult to treat. These findings provide valuable new insight into the molecular make-up of this cancer that may lead to new targeted drug therapies."

Lymphoma is a cancer that originates in the lymphocytes (a type of white blood cell) of the immune system. Diffuse large B-cell lymphoma is a fast-growing, aggressive form of non-Hodgkin's lymphoma. It accounts for about 30 to 35 percent of all non-Hodgkin's lymphomas, and about 25,000 new cases are diagnosed each year. Non-Hodgkin's lymphomas usually are treated with several types of chemotherapy – cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) – and a biological therapy, such as the monoclonal antibody rituximab (Rituxan). Radiation therapy may be used on occasion, and bone marrow or stem cell transplantation may also be a treatment option.

Dr. Gartenhaus says researchers hope the study findings will help to develop new therapies that will be effective and well-tolerated by patients. "We believe it is important to identify drugs that can improve the efficacy and reduce the toxicity of standard anti-lymphoma therapy," he says.

The new research showed that using compounds to inhibit ERK and CHK2 did not cause any significant damage to normal cells or tissue examined in the lab, according to Bojie Dai, Ph.D., a postdoctoral fellow at the University of Maryland School of Medicine and the lead author. "We hope that new therapies directed at these two proteins would have modest side effects because they would target only the lymphoma cells," Dr. Dai says.

Dr. Gartenhaus says that researchers don't know yet whether the interaction between ERK and CHK2 occurs in other types of lymphoma.

The study was funded by a grant from the National Institutes of Health and a Merit Review Award from the U.S. Department of Veterans Affairs.

Bojie Dai, X. Frank Zhao, Krystyna Mazan-Mamczarz, Patrick Hagner, Sharon Corl, El Mustapha Bahassi, Song Lu, Peter J. Stambrook, Paul Shapiro and Ronald B. Gartenhaus. "Functional and molecular interactions between ERK and CHK2 in diffuse large B-cell lymphoma." Published online in Nature Communications on July 19, 2011. http://dx.doi.org/10.1038/ncomms1404.

Karen E. Warmkessel | EurekAlert!
Further information:
http://www.umm.edu

Further reports about: Bird Communication CHK2 ERK Nature Immunology cancer cells lymphoma cells proteins

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>