Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Maryland researchers discover possible drug targets for common non-Hodgkin's lymphoma

20.07.2011
Study finds novel interaction between 2 proteins that regulate cell growth

Researchers at the University of Maryland School of Medicine have discovered a novel interaction between two proteins involved in regulating cell growth that could provide possible new drug targets for treating diffuse large B-cell lymphoma, the most common type of non-Hodgkin's lymphoma.

In a study published online in Nature Communications, the scientists report that they have found a complex molecular and functional relationship between ERK (extracellular signal-regulated kinase), a protein that helps to regulate cell proliferation and survival, and CHK2 (checkpoint kinase 2), a protein that is involved in the cellular DNA damage response. They also demonstrated, for the first time, elevated levels of both proteins in diffuse large B-cell lymphoma cells, compared to non-cancerous cells.

Ronald B. Gartenhaus, M.D., associate professor of medicine at the University of Maryland School of Medicine and the senior author, says researchers found that CHK2 appears to regulate the activity of ERK, although the exact mechanism is not clear. "The two proteins physically interact, which was not known before, and we may be able to use this interaction for therapeutic advantage. We found that treating human B-cell lymphoma cells with both an ERK inhibitor inhibitor and a CHK2 inhibitor killed substantially more cancer cells than treating the cells with either drug alone," he says.

"Based on our findings, we believe that a combination therapy targeting both ERK and CHK2 could offer a potential new approach to treating diffuse large B-cell lymphoma," says Dr. Gartenhaus, who is co-leader of the Program in Molecular and Structural Biology at the University of Maryland Marlene and Stewart Greenebaum Cancer Center.

The drugs used to inhibit ERK and CHK2 caused the cancer cells to die through a process called apoptosis, or programmed cell death. Human cells normally self-destruct in a controlled manner, but cancer cells lose this ability and consequently grow uncontrollably.

E. Albert Reece, M.D., Ph.D., M.B.A., vice president of medical affairs at the University of Maryland and dean of the University of Maryland School of Medicine, says, "This is a very important discovery that may ultimately benefit patients with diffuse large B-cell lymphoma, a common hematological malignancy that can be difficult to treat. These findings provide valuable new insight into the molecular make-up of this cancer that may lead to new targeted drug therapies."

Lymphoma is a cancer that originates in the lymphocytes (a type of white blood cell) of the immune system. Diffuse large B-cell lymphoma is a fast-growing, aggressive form of non-Hodgkin's lymphoma. It accounts for about 30 to 35 percent of all non-Hodgkin's lymphomas, and about 25,000 new cases are diagnosed each year. Non-Hodgkin's lymphomas usually are treated with several types of chemotherapy – cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) – and a biological therapy, such as the monoclonal antibody rituximab (Rituxan). Radiation therapy may be used on occasion, and bone marrow or stem cell transplantation may also be a treatment option.

Dr. Gartenhaus says researchers hope the study findings will help to develop new therapies that will be effective and well-tolerated by patients. "We believe it is important to identify drugs that can improve the efficacy and reduce the toxicity of standard anti-lymphoma therapy," he says.

The new research showed that using compounds to inhibit ERK and CHK2 did not cause any significant damage to normal cells or tissue examined in the lab, according to Bojie Dai, Ph.D., a postdoctoral fellow at the University of Maryland School of Medicine and the lead author. "We hope that new therapies directed at these two proteins would have modest side effects because they would target only the lymphoma cells," Dr. Dai says.

Dr. Gartenhaus says that researchers don't know yet whether the interaction between ERK and CHK2 occurs in other types of lymphoma.

The study was funded by a grant from the National Institutes of Health and a Merit Review Award from the U.S. Department of Veterans Affairs.

Bojie Dai, X. Frank Zhao, Krystyna Mazan-Mamczarz, Patrick Hagner, Sharon Corl, El Mustapha Bahassi, Song Lu, Peter J. Stambrook, Paul Shapiro and Ronald B. Gartenhaus. "Functional and molecular interactions between ERK and CHK2 in diffuse large B-cell lymphoma." Published online in Nature Communications on July 19, 2011. http://dx.doi.org/10.1038/ncomms1404.

Karen E. Warmkessel | EurekAlert!
Further information:
http://www.umm.edu

Further reports about: Bird Communication CHK2 ERK Nature Immunology cancer cells lymphoma cells proteins

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>