University of Kentucky-led research could be path to new energy sources

Tom Niehaus, completing his doctorate in the Chappell laboratory; Shigeru Okada, a sabbatical professor from the aquatic biosciences department at the University of Tokyo; Tim Devarenne, a UK graduate and now professor of biochemistry and biophysics at Texas A&M University; and UK colleagues, Chappell, David Watt, professor of cellular and molecular biochemistry (College of Medicine) and his post-doctoral associate Vitaliy Sviripa had an important paper published today in the Proceedings of the National Academy of Sciences (PNAS). Their research findings go well beyond the basic science dealing with the origins of oil and coal.

While scientists previously established that oil and coal have their roots in the organisms that lived on the planet over 500 million years ago, researchers only are sure of one organism that directly contributed to these natural resources. That organism is the algae Botryococcus braunii which left behind its chemical fingerprints – an oil that over geological time has turned into oil and coal shale deposits.

“Even more exciting is that this unique algae, B. braunii, still exists today and has been the target of studies from the large chemical and petrochemical industries,” said Chappell.

This algae is very slow growing, so it is not necessarily a good source for biofuels. However, if scientists can capture its genetic blueprints for the biosynthesis of these high value oils, then these genes could be used to generate alternative production platforms.

This team of investigators isolated the necessary genes, characterized the biochemical traits encoded by these genes, and then genetically engineered yeast to produce this very high-value oil. This work has provided the first example of recreating a true direct replacement for oil and coal shale deposits.

Chappell said, “This represents the culmination of an outstanding effort to understand a fundamental process that has direct ramifications for a real-world problem — how are we going to generate a truly renewable biofuel supply?”

Devarenne added, “This study identifies a very remarkable molecular mechanism for the production of hydrocarbons that, as far as we can tell, is not found in any other organism. Thus, it offers a unique insight into how hydrocarbons were produced hundreds of millions of years ago.”

Media Contact

Carl Nathe EurekAlert!

More Information:

http://www.uky.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors