Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Iowa Researchers Identify Caffeine-Consuming Bacterium

09.06.2011
As it turns out, humans aren't the only organisms that turn to caffeine for a pick-me-up. University of Iowa scientists have identified four different bacteria that actually can live on caffeine.

One of them, known as Pseudomonas putida CBB5, was found in a flowerbed outside a UI research laboratory. The research team says the discovery -- and the new understanding of how the process works -- could in the future allow scientists to convert waste from leftover coffee, tea and even chocolate into useful substances, like pharmaceuticals, animal feed or biofuels.

Previous studies have also discovered caffeine-degrading bacteria, but the UI team took the research one step further. They identified the gene sequence that enables the bacterium to break down the caffeine compound in nature.

Caffeine is found naturally in more than 60 different plants and is composed of carbon, hydrogen, nitrogen and oxygen. Its molecular structure features three clusters of carbon and hydrogen atoms known as methyl groups, enabling caffeine to resist degradation by most bacteria.

Led by UI chemical and biochemical engineering doctoral student Ryan Summers, the study found that Pseudomonas putida CBB5 uses four newly discovered digestive proteins to break caffeine down into xanthine and then to carbon dioxide and ammonia. It removes the methyl groups from the molecule (a process called N-demethylation), allowing the bacteria to feed on the nitrogen atoms in the interior of the molecule (xanthine).

The caffeine digestive proteins from CBB5 can be used to convert caffeine into building blocks for drugs used to treat asthma, improve blood flow and stabilize heart arrhythmias.

"With one or two methyl groups removed, the remainder of the molecule can be used as the base for a number of pharmaceuticals," Summers said. "You basically use the new genes and enzymes that could take something we have a lot of -- like caffeine -- and make drugs that are typically very expensive. And that process could lower the costs for people who need them."

Summers said the bacterium's digestive proteins could also be used to remove caffeine and related compounds from large amounts of waste generated from coffee and tea processing, which pollute the environment. The decaffeinated waste from these industries could be used for animal feed, or for production of transportation fuel, especially in areas where corn (for ethanol) is scarce.

The team originally thought only one enzyme was responsible for extracting methyl groups. Ultimately, they identified four (NdmA, NdmB, NdmC, and reductase) involved in the N-demethylation process. This helped them to pinpoint the genes responsible for enzyme production in the bacterium.

Summers, with UI research scientists Michael Louie and Chi Li Yu, studied the bacterium in professor Mani Subramanian's lab in the Chemical and Biochemical Engineering Department, and the Center for Biocatalysis and Bioprocessing. They initially set out to craft a dipstick measurement for nursing mothers to test caffeine levels in breast milk, but the gene discovery took the research down a different path.

"These findings are a significant leap, as other researchers have shown bacteria can grow on caffeine, but, until now, the exact mechanism was a mystery," Subramanian said. "Now that we are starting to work on this, we are finding completely new genes, and reactions that we never expected."

Summers presented the findings at the American Society for Microbiology in New Orleans in late May. He anticipates seeking a scientific publication of the study this summer.

STORY SOURCE: University of Iowa Graduate College Office of External Relations, 205 Gilmore Hall, Iowa City, Iowa 52242-2500

Alison Sullivan | Newswise Science News
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht New Computer Model Could Explain how Simple Molecules Took First Step Toward Life
29.07.2015 | Brookhaven National Laboratory

nachricht Switch for building barrier in roots
29.07.2015 | The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

A New Litmus Test for Chaos?

29.07.2015 | Physics and Astronomy

New Computer Model Could Explain how Simple Molecules Took First Step Toward Life

29.07.2015 | Life Sciences

New ERC calls published under Horizon 2020

29.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>