Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Iowa Researchers Identify Caffeine-Consuming Bacterium

09.06.2011
As it turns out, humans aren't the only organisms that turn to caffeine for a pick-me-up. University of Iowa scientists have identified four different bacteria that actually can live on caffeine.

One of them, known as Pseudomonas putida CBB5, was found in a flowerbed outside a UI research laboratory. The research team says the discovery -- and the new understanding of how the process works -- could in the future allow scientists to convert waste from leftover coffee, tea and even chocolate into useful substances, like pharmaceuticals, animal feed or biofuels.

Previous studies have also discovered caffeine-degrading bacteria, but the UI team took the research one step further. They identified the gene sequence that enables the bacterium to break down the caffeine compound in nature.

Caffeine is found naturally in more than 60 different plants and is composed of carbon, hydrogen, nitrogen and oxygen. Its molecular structure features three clusters of carbon and hydrogen atoms known as methyl groups, enabling caffeine to resist degradation by most bacteria.

Led by UI chemical and biochemical engineering doctoral student Ryan Summers, the study found that Pseudomonas putida CBB5 uses four newly discovered digestive proteins to break caffeine down into xanthine and then to carbon dioxide and ammonia. It removes the methyl groups from the molecule (a process called N-demethylation), allowing the bacteria to feed on the nitrogen atoms in the interior of the molecule (xanthine).

The caffeine digestive proteins from CBB5 can be used to convert caffeine into building blocks for drugs used to treat asthma, improve blood flow and stabilize heart arrhythmias.

"With one or two methyl groups removed, the remainder of the molecule can be used as the base for a number of pharmaceuticals," Summers said. "You basically use the new genes and enzymes that could take something we have a lot of -- like caffeine -- and make drugs that are typically very expensive. And that process could lower the costs for people who need them."

Summers said the bacterium's digestive proteins could also be used to remove caffeine and related compounds from large amounts of waste generated from coffee and tea processing, which pollute the environment. The decaffeinated waste from these industries could be used for animal feed, or for production of transportation fuel, especially in areas where corn (for ethanol) is scarce.

The team originally thought only one enzyme was responsible for extracting methyl groups. Ultimately, they identified four (NdmA, NdmB, NdmC, and reductase) involved in the N-demethylation process. This helped them to pinpoint the genes responsible for enzyme production in the bacterium.

Summers, with UI research scientists Michael Louie and Chi Li Yu, studied the bacterium in professor Mani Subramanian's lab in the Chemical and Biochemical Engineering Department, and the Center for Biocatalysis and Bioprocessing. They initially set out to craft a dipstick measurement for nursing mothers to test caffeine levels in breast milk, but the gene discovery took the research down a different path.

"These findings are a significant leap, as other researchers have shown bacteria can grow on caffeine, but, until now, the exact mechanism was a mystery," Subramanian said. "Now that we are starting to work on this, we are finding completely new genes, and reactions that we never expected."

Summers presented the findings at the American Society for Microbiology in New Orleans in late May. He anticipates seeking a scientific publication of the study this summer.

STORY SOURCE: University of Iowa Graduate College Office of External Relations, 205 Gilmore Hall, Iowa City, Iowa 52242-2500

Alison Sullivan | Newswise Science News
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>