Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Florida study provides insight into evolution of first flowers

19.05.2009
Charles Darwin described the sudden origin of flowering plants about 130 million years ago as an abominable mystery, one that scientists have yet to solve.

But a new University of Florida study, set to appear next week in the online edition of the Proceedings of the National Academy of Sciences, is helping shed light on the mystery with information about what the first flowers looked like and how they evolved from nonflowering plants.

"There was nothing like them before and nothing like them since," said Andre Chanderbali, lead author of the study and a postdoctoral associate at UF's Florida Museum of Natural History. "The origin of the flower is the key to the origin of the angiosperms (flowering plants)."

The goal of this research is to understand the original regulatory program, or set of genetic switches, that produced the first flower in the common ancestor of all living flowering plants, said Pam Soltis, study co-author and curator of molecular systematics and evolutionary genetics at the Florida Museum. Better understanding of these genetic switches could one day help scientists in other disciplines such as medicine or agriculture, including help in growing plants used to fight disease or developing more drought-resistant crops.

The flower is one of the key innovations of evolution, responsible for a massive burst of evolution that has resulted in perhaps as many as 400,000 angiosperm species. Before flowering plants emerged, the seed-bearing plant world was dominated by gymnosperms, which have cone-like structures instead of flowers and include pine trees, sago palms and ginkgos. Gymnosperms first appeared in the fossil record about 360 million years ago.

The new study provides insight into how the first flowering plants evolved from pre-existing genetic programs found in gymnosperms and then developed into the diversity of flowering plants we see today.

The study compares the genetic structure of two vastly different flowering plants to see whether differences exist in the set of circuits that create each species' flower. Researchers examined the genetic circuitry of Arabidopsis thaliana, a small flowering plant commonly used as a model organism in plant genetics research, and the avocado tree Persea americana, which belongs to an older lineage of so-called basal angiosperms.

"What we found is that the flower of Persea is a genetic fossil, still carrying genetic instructions that would have allowed for the transformation of cones into flowers," Chanderbali said.

Advanced angiosperms have four organ types: female organs (carpels), male organs (stamens), petals (typically colorful) and sepals (typically green). Basal angiosperms have three: carpels, stamens and tepals, which are typically petal-like structures. The researchers expected each type of organ found in Persea's flowers would have a unique set of genetic instructions. Instead they found significant overlap among the three organ types.

"Although the organs are developing to ultimately become different things, from a genetic developmental perspective, they share much more than you would expect," Chanderbali said. "As you go back in time, the borders fade to a blur."

"With these facts established, we can now think about the vast space open to natural selection to establish ever more rigid borders," said Virginia Walbot, a biology professor at Stanford University who is familiar with the research. The selection process arrived at a "narrow solution in terms of four discrete organs but with fantastic diversity of organ numbers, shapes and colors that provide the defining phenotypes of each flowering plant species."

Researchers don't know exactly which gymnosperms gave rise to flowering plants, but previous research suggests some genetic program in the gymnosperms was modified to make the first flower, Soltis said. A pine tree produces pine cones that are either male or female, unlike flowers, which contain both male and female parts. But a male pine cone has almost everything that a flower has in terms of its genetic wiring.

Douglas Soltis, chairman of the UF botany department, emphasized that the study highlights the importance of studying primitive flowering plants such as the avocado to gain insight into the early history of the flower. Survivors of ancient lineages represent a crucial link to the first flowers and provide insight that cannot be obtained by studying highly derived models such as Arabidopsis, he said.

Andre Chanderbali | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>