Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universitat Autonoma de Barcelona researchers first to clone mice in Spain

16.06.2009
Scientists are studying how to improve the efficiency of the cloning process

Researchers at the Department of Cell Biology, Physiology and Immunology at Universitat Autònoma de Barcelona (UAB) are the first to have cloned mice in Spain.

Cloe, Cleo and Clona are three female brown-coloured mice and were born respectively on 12 May, 3 June and 10 June. By means of nuclear transfer techniques, scientist collected mature oocytes, removed their chromosomes and substituted them for the nucleus of an adult somatic cell.

The cloning of mice is part of a research being carried out to study new ways to improve the efficiency of the cloning process.

All three mice were or are being suckled with other non-clones and their growth parameters are within normal range, say researchers who were in charge of cloning the mice, Nuno Costa-Borges, Josep Santaló and Elena Ibáñez from the Department of Cell Biology, Physiology and Immunology at UAB.

In order to clone the animals, researchers collected oocytes and surrounding cumulus cells from several female mice. The chromosomes were extracted from each of the oocytes and substituted with a cell from the cumulus by cytoplasm injection. Once the oocytes had been reconstructed, they were activated by simulating the stimuli occurring during fecundation so as to induce embryonic development. The cloned embryos were later transferred to receptor females.

The mice obtained by researchers at UAB, in addition to being the first of their species cloned in Spain, are the first animals to survive at birth and develop correctly. In 2003, Spanish scientists were able to clone a female Pyrenean mountain goat using a cell from the last animal of this species, which became extinct in 2000. The cloned animal however died 10 minutes after it was born due to a severe lung defect.

Increase in the efficiency of the cloning process

The cloning of the mice forms part of a research which scientists at UAB are carrying out to discover new ways of improving the efficiency of the cloning process. Nuno Costa-Borges, Josep Santaló and Elena Ibáñez are studying whether the use of valproic acid could contribute to an increase in the success rate of nuclear transfer cloning, currently situated at approximately 1% for mice using standard procedures.

Valproic acid is an inhibitor of the enzyme histone deacetylase, located at the cell nucleus where the DNA is found. Research carried out until now has shown that histone deacetylase inhibitors seem to contribute to an increase in levels of gene expression, which would favour the reprogramming of the somatic cell nucleus transferred to the oocyte cytoplasm. Its use in nuclear transfer processes however is very recent. It was first used two years ago and research until now has focused on trichostatin, an inhibitor which has significantly improved the efficiency of mouse cloning, raising it to 5%.

Studies carried out by researchers at UAB can not only be applied to reproductive cloning of animal models; they can also be used for the reprogramming of cells for therapeutic aims.

Costa-Borges, Santaló and Ibáñez are comparing three groups of cloned embryos in their research: valproic acid in the first group, trichostatin in the second and no inhibiting substance in the third group. The three mice in this case were cloned using the first (Cloe and Clona) and second (Cleo) inhibitors. In vitro experiments already pointed to improvements in the development of cloned embryos using inhibitors. However, scientists must wait until the end of the in vivo test period in July to obtain more conclusive data.

Maria Jesus Delgado | EurekAlert!
Further information:
http://www.uab.es

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>