Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uniquely Preserved Whale Fossil Offers Clues to Transition to Water

09.11.2011
Decorative stone is often used in buildings for its strength and durability but is not often thought of as a hiding place for fossils.

If not for an observant Italian stonecutter, a recently discovered fossil whale specimen from Egypt might have become part of the edifice of some new skyscraper rather than the focus of a scientific study.

This fossil skull and partial rib cage, described in the latest issue of the Journal of Vertebrate Paleontology, show transitional features of a new species of early whale and hint at how it became a fossil in the first place.

Giovanni Bianucci of the Università di Pisa and Philip Gingerich of the University of Michigan collaborated to describe this unique find. “The fossil came from deep in an enormous limestone quarry in Egypt, but it was only recognized to be a fossil skeleton when it was cut into decorative facing stone in Italy. Fortunately it then found its way to the museum in Pisa where it could be studied,” said Bianucci. Working with researchers at museums and universities in Egypt and using Google Earth, Gingerich was able to find and revisit the location of the quarry where the fossil had been quarried.

Because the limestone had already been cut into thick slabs about 1 inch (27mm) thick, details of the specimen could be examined in a way that would normally require destruction of a fossil. The researchers were able to remove the slices of the skull and rib cage from the stone and reposition them as they had been in life. After accomplishing this, they were able to investigate the unusual characters preserved by the fossil and recognize that it represented a new species, dubbed Aegyptocetus tarfa (ay-jip-to-SEE-tus TAR-fa).

Says Gingerich, “Connecting links that are intermediate in geological time, intermediate in morphological form, and intermediate in functional adaptation are the evidence for evolution, and Aegyptocetus tarfa falls right in the middle of what we know about the evolutionary transition of whales from land to sea.” Dating to around 40 million years ago, the fossil documents a transitional stage in the evolution of whales from their terrestrial ancestors to the fully aquatic species we see today. The transitional characters present in this species include a retained sense of smell (which is usually lost in aquatic mammal lineages), an enhanced ability to hear (a characteristic of later and modern whales), and the ability to still haul itself out of the water, similar to modern seals.

In addition to these transitional features, the fossil had some other surprises. Bite marks on its ribs may show that the whale was attacked by a shark before dying and becoming fossilized. “It is rare to find evidence of behavioral interaction in the fossil record, but here we have evidence of an early semiaquatic whale being attacked by a shark,” says Bianucci. In addition, small scars on the bones are the burrows of ancient barnacles, giving some idea about how long the carcass sat on the bottom of the ocean before being buried.

The researchers suspect there may be other fossils hidden in the limestone and are making connections with stonecutters who work with the rock from the quarry so that they can ask them to keep an eye out for other ancient treasures.

About the Society of Vertebrate Paleontology
Founded in 1940 by thirty-four paleontologists, the Society now has more than 2,300 members representing professionals, students, artists, preparators and others interested in vertebrate paleontology. It is organized exclusively for educational and scientific purposes, with the object of advancing the science of vertebrate paleontology.
Journal of Vertebrate Paleontology
The Journal of Vertebrate Paleontology (JVP) is the leading journal of professional vertebrate paleontology and the flagship publication of the Society. It was founded in 1980 by Dr. Jiri Zidek and publishes contributions on all aspects of vertebrate paleontology.

For complimentary access to the full article beginning November 9, 2011, visit http://www.tandfonline.com/toc/ujvp20/current.

The article appears in the Journal of Vertebrate Paleontology 31(6), published by Taylor and Francis.

Citation: Bianucci, G. and P.D. Gingerich. 2011. AEGYPTOCETUS TARFA, N. GEN. ET SP. (MAMMALIA, CETACEA), FROM THE MIDDLE EOCENE OF EGYPT: CLINORHYNCHY, OLFACTION, AND HEARING IN A PROTOCETID WHALE. Journal of Vertebrate Paleontology 31(6):1-16.

AUTHOR CONTACT INFORMATION:

Giovanni Bianucci
Dipartimento di Scienze della Terra
Università di Pisa
Pisa, Italy
+39-050-2215842
Fax: +39-050-2215800
bianucci@dst.unipi.it
Phillip D. Gingerich
Museum of Paleontology and
Department of Earth and Environmental Sciences
University of Michigan
Ann Arbor, Michigan USA
+1-734-764-0490
Fax: +1-734-936-1380
gingeric@umich.edu
Other Experts Not Associated with this Study
Anthony Friscia
University of California, Los Angeles
Dept. of Integrative Biology and Physiology
Los Angeles, CA USA
+1-310-206-6011
tonyf@ucla.edu
Mark D. Uhen
George Mason University
AOES Geology
Fairfax, VA USA
+1-703-993-5264
Fax: +1-703-993-1066
Ewan Fordyce
University of Otago
Dunedin, New Zealand
+64-3-479-7510
ewan.fordyce@stonebow.otago.ac.nz

| Newswise Science News
Further information:
http://www.vertpaleo.org/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>