Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uniquely Preserved Whale Fossil Offers Clues to Transition to Water

09.11.2011
Decorative stone is often used in buildings for its strength and durability but is not often thought of as a hiding place for fossils.

If not for an observant Italian stonecutter, a recently discovered fossil whale specimen from Egypt might have become part of the edifice of some new skyscraper rather than the focus of a scientific study.

This fossil skull and partial rib cage, described in the latest issue of the Journal of Vertebrate Paleontology, show transitional features of a new species of early whale and hint at how it became a fossil in the first place.

Giovanni Bianucci of the Università di Pisa and Philip Gingerich of the University of Michigan collaborated to describe this unique find. “The fossil came from deep in an enormous limestone quarry in Egypt, but it was only recognized to be a fossil skeleton when it was cut into decorative facing stone in Italy. Fortunately it then found its way to the museum in Pisa where it could be studied,” said Bianucci. Working with researchers at museums and universities in Egypt and using Google Earth, Gingerich was able to find and revisit the location of the quarry where the fossil had been quarried.

Because the limestone had already been cut into thick slabs about 1 inch (27mm) thick, details of the specimen could be examined in a way that would normally require destruction of a fossil. The researchers were able to remove the slices of the skull and rib cage from the stone and reposition them as they had been in life. After accomplishing this, they were able to investigate the unusual characters preserved by the fossil and recognize that it represented a new species, dubbed Aegyptocetus tarfa (ay-jip-to-SEE-tus TAR-fa).

Says Gingerich, “Connecting links that are intermediate in geological time, intermediate in morphological form, and intermediate in functional adaptation are the evidence for evolution, and Aegyptocetus tarfa falls right in the middle of what we know about the evolutionary transition of whales from land to sea.” Dating to around 40 million years ago, the fossil documents a transitional stage in the evolution of whales from their terrestrial ancestors to the fully aquatic species we see today. The transitional characters present in this species include a retained sense of smell (which is usually lost in aquatic mammal lineages), an enhanced ability to hear (a characteristic of later and modern whales), and the ability to still haul itself out of the water, similar to modern seals.

In addition to these transitional features, the fossil had some other surprises. Bite marks on its ribs may show that the whale was attacked by a shark before dying and becoming fossilized. “It is rare to find evidence of behavioral interaction in the fossil record, but here we have evidence of an early semiaquatic whale being attacked by a shark,” says Bianucci. In addition, small scars on the bones are the burrows of ancient barnacles, giving some idea about how long the carcass sat on the bottom of the ocean before being buried.

The researchers suspect there may be other fossils hidden in the limestone and are making connections with stonecutters who work with the rock from the quarry so that they can ask them to keep an eye out for other ancient treasures.

About the Society of Vertebrate Paleontology
Founded in 1940 by thirty-four paleontologists, the Society now has more than 2,300 members representing professionals, students, artists, preparators and others interested in vertebrate paleontology. It is organized exclusively for educational and scientific purposes, with the object of advancing the science of vertebrate paleontology.
Journal of Vertebrate Paleontology
The Journal of Vertebrate Paleontology (JVP) is the leading journal of professional vertebrate paleontology and the flagship publication of the Society. It was founded in 1980 by Dr. Jiri Zidek and publishes contributions on all aspects of vertebrate paleontology.

For complimentary access to the full article beginning November 9, 2011, visit http://www.tandfonline.com/toc/ujvp20/current.

The article appears in the Journal of Vertebrate Paleontology 31(6), published by Taylor and Francis.

Citation: Bianucci, G. and P.D. Gingerich. 2011. AEGYPTOCETUS TARFA, N. GEN. ET SP. (MAMMALIA, CETACEA), FROM THE MIDDLE EOCENE OF EGYPT: CLINORHYNCHY, OLFACTION, AND HEARING IN A PROTOCETID WHALE. Journal of Vertebrate Paleontology 31(6):1-16.

AUTHOR CONTACT INFORMATION:

Giovanni Bianucci
Dipartimento di Scienze della Terra
Università di Pisa
Pisa, Italy
+39-050-2215842
Fax: +39-050-2215800
bianucci@dst.unipi.it
Phillip D. Gingerich
Museum of Paleontology and
Department of Earth and Environmental Sciences
University of Michigan
Ann Arbor, Michigan USA
+1-734-764-0490
Fax: +1-734-936-1380
gingeric@umich.edu
Other Experts Not Associated with this Study
Anthony Friscia
University of California, Los Angeles
Dept. of Integrative Biology and Physiology
Los Angeles, CA USA
+1-310-206-6011
tonyf@ucla.edu
Mark D. Uhen
George Mason University
AOES Geology
Fairfax, VA USA
+1-703-993-5264
Fax: +1-703-993-1066
Ewan Fordyce
University of Otago
Dunedin, New Zealand
+64-3-479-7510
ewan.fordyce@stonebow.otago.ac.nz

| Newswise Science News
Further information:
http://www.vertpaleo.org/

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>