Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique method creates correct mirror image of molecule

22.05.2013
Many molecules have a right and a left form, just like shoes.

In pharmaceuticals, it is important that the correct form of the molecule is used. Researchers at the University of Gothenburg have been able to produce the one mirror image by using crystals with special properties. This can have a major impact on the production of pharmaceuticals.


Researchers at the University of Gothenburg have been able to produce the one mirror image by using crystals with special properties. This can have a major impact on the production of pharmaceuticals. Photo: Susanne Olsson

Molecules that are the same, but mirror images are called chiral after the Greek word for hand.

The mirror image forms of chiral molecules have identical properties except when they interact with other chiral molecules, sort of like the left shoe fitting the left foot better than the right shoe.

Our bodies contain chiral molecules, such as amino acids in proteins and sugar molecules in our genetic material. But in all living organisms, only one of the two mirror image forms is used.
"Why it is like this is a mystery to the scientific community, but this is of major significance, to the production of pharmaceuticals for instance," says Susanne Olsson at the Department for Chemistry and Molecular Biology, University of Gothenburg.

The mirror images can have different effects in our bodies where one can provide the desired effect while the other in the worst case can give rise to serious side effects.

"Today, all new pharmaceuticals must contain only the mirror image form with the desired effect. But when a chiral molecule is produced in a laboratory, equal amounts of the two mirror images are obtained," says Susanne Olsson.

To-date, the active mirror image form has been produced by adding a mirror image form of another substance. The problem is then that this substance must be separated from the pharmaceutical.
Being able to produce the desired mirror image form without having to add mirror image forms of some other substances is considered by some chemists to be impossible.

"But by using compounds where the mirror image molecules switch between being the right form and the left form, I have succeeded in getting all crystals to contain only the one mirror image. I have thereby done the impossible, produced only the one mirror image form without using any other substance," says Susanne Olsson.

She believes that the method is industrially usable since crystallisation is a process that is good for large-scale production.

Link to the dissertation: http://hdl.handle.net/2077/32316

Supervisor: Professor Mikael Håkansson

Contact: Susanne Olsson, Department of Chemistry and Molecular Biology, University of Gothenburg,
mobile phone +46 0709 609 757
susanneol@hotmail.com

Annika Koldenius | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>