Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique close-up of the dynamics of photosynthesis

10.05.2010
Researchers at the University of Gothenburg, Sweden, have managed, with the help of an advanced X-ray flash, to photograph the movement of atoms during photosynthesis – an achievement that has been recognised by the journal Science.

The European Synchrotron Radiation Facility in Grenoble is home to one of the world’s most advanced particle accelerators, whose pulsing X-ray beams are used by researchers to photograph and study life’s tiniest components: atoms, molecules and proteins.

Using the special X-ray camera, researchers can depict the position of atoms in a molecule and obtain a three-dimensional image of something that is smaller than a billionth of a metre. Researchers at the Department of Chemistry at the University of Gothenburg and at Chalmers University of Technology have now used this advanced technology to photograph the dynamics of life's most fundamental system: photosynthesis.

The focus of the study was a protein which is central to the conversion of light to chemical energy during photosynthesis, and which process the Gothenburg researchers have been the first to (successfully photograph) (capture?). The X-ray image shows how the protein temporarily stores the light energy immediately before a chemical bond forms – a movement that takes place on a scale of less than a nanometre.

The photograph is not only a fascinating snapshot of the very core of life, but could also be used in the solar panels of the future, where researchers hope to be able to imitate the sophisticated energy conversion of photosynthesis.

The photography is highlighted in an article in the next issue of Science.
Link to article: http://www.sciencemag.org/cgi/content/full/328/5978/630

Helena Aaberg | idw
Further information:
http://10.1126/science.1186159
http://www.sciencemag.org/cgi/content/full/328/5978/630
http://www.gu.se/

Further reports about: Science TV X-ray microscopy advanced X-ray flash photosynthesis

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>