Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique animal species can survive in space

09.09.2008
Water bears (tardigrades) are the first animals in the world to have survived exposure to the vacuum and radiation of space.

This has been established by Ingemar Jönsson, a researcher at Kristianstad University in Sweden.

It has been nearly a year since the ecologist Ingemar Jönsson had some 3,000 microscopic water bears sent up on a twelve-day space trip. The aim of the research project, which was supported by the European Space Agency, was to find out more about the basic physiology of tardigrades by seeing if they can survive in a space environment.

Now Ingemar Jönsson and his colleagues in Stockholm, Stuttgart, and Cologne are publishing their research findings, including an article in the international journal Current Biology.

"Our principal finding is that the space vacuum, which entails extreme dehydration, and cosmic radiation were not a problem for water bears. On the other hand, the ultraviolet radiation in space is harmful to water bears, although a few individual can even survive that," says Ingemar Jönsson.

The next challenge facing Ingemar Jönsson is to try to understand the mechanisms behind this exceptional tolerance in water bears. He suspects that even the water bears that got through the space trip without any trouble may in fact have incurred DNA damage, but that the animals managed to repair this damage.

"All knowledge involving the repair of genetic damage is central to the field of medicine," says Ingemar.

"One problem with radiation therapy in treating cancer today is that healthy cells are also harmed. If we can document and show that there are special molecules involved in DNA repair in multicellular animals like tardigrades, we might be able to further the development of radiation therapy."

Tardigrades survive exposure to space in low Earth orbit
K. Ingemar Jönsson, Elke Rabbow, Ralph O. Schill, Mats Harms-Ringdahl, and Petra Rettberg

Current Biology, Vol 18, R729-R731, 09 September 2008

Ingemar Jönsson can be reached at phone: +46-(0)70 2666 541 or e-mail at: ingemar.jonsson@hkr.se

Pressofficer Lisa Nordenhem, lisa.nordenhem@hkr.se; +46-703 176578
Water bear facts
Water bears (tardigrades) are multicellular, invertebrate animals about one millimeter in size. They exist in nearly all ecosystems of the world. What makes them unique is that they can survive repeated dehydration and can lose nearly all the water they have in their bodies. When dehydrated, they enter into a dormant state in which the body contracts and metabolism ceases. In this death-like dormant state, water bears manage to maintain the structures in their cells until water is available and they can be active again.

Ingemar Björklund | idw
Further information:
http://www.vr.se
http://www.current-biology.com/content/article/abstract?uid=PIIS0960982208008051

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>