Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique animal species can survive in space

09.09.2008
Water bears (tardigrades) are the first animals in the world to have survived exposure to the vacuum and radiation of space.

This has been established by Ingemar Jönsson, a researcher at Kristianstad University in Sweden.

It has been nearly a year since the ecologist Ingemar Jönsson had some 3,000 microscopic water bears sent up on a twelve-day space trip. The aim of the research project, which was supported by the European Space Agency, was to find out more about the basic physiology of tardigrades by seeing if they can survive in a space environment.

Now Ingemar Jönsson and his colleagues in Stockholm, Stuttgart, and Cologne are publishing their research findings, including an article in the international journal Current Biology.

"Our principal finding is that the space vacuum, which entails extreme dehydration, and cosmic radiation were not a problem for water bears. On the other hand, the ultraviolet radiation in space is harmful to water bears, although a few individual can even survive that," says Ingemar Jönsson.

The next challenge facing Ingemar Jönsson is to try to understand the mechanisms behind this exceptional tolerance in water bears. He suspects that even the water bears that got through the space trip without any trouble may in fact have incurred DNA damage, but that the animals managed to repair this damage.

"All knowledge involving the repair of genetic damage is central to the field of medicine," says Ingemar.

"One problem with radiation therapy in treating cancer today is that healthy cells are also harmed. If we can document and show that there are special molecules involved in DNA repair in multicellular animals like tardigrades, we might be able to further the development of radiation therapy."

Tardigrades survive exposure to space in low Earth orbit
K. Ingemar Jönsson, Elke Rabbow, Ralph O. Schill, Mats Harms-Ringdahl, and Petra Rettberg

Current Biology, Vol 18, R729-R731, 09 September 2008

Ingemar Jönsson can be reached at phone: +46-(0)70 2666 541 or e-mail at: ingemar.jonsson@hkr.se

Pressofficer Lisa Nordenhem, lisa.nordenhem@hkr.se; +46-703 176578
Water bear facts
Water bears (tardigrades) are multicellular, invertebrate animals about one millimeter in size. They exist in nearly all ecosystems of the world. What makes them unique is that they can survive repeated dehydration and can lose nearly all the water they have in their bodies. When dehydrated, they enter into a dormant state in which the body contracts and metabolism ceases. In this death-like dormant state, water bears manage to maintain the structures in their cells until water is available and they can be active again.

Ingemar Björklund | idw
Further information:
http://www.vr.se
http://www.current-biology.com/content/article/abstract?uid=PIIS0960982208008051

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>