Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Unfolding SAGA of Transcriptional Co-Activators

18.07.2011
Successful gene expression requires the concerted action of a host of regulatory factors. Long overshadowed by bonafide transcription factors, coactivators—the hanger-ons that facilitate transcription by docking onto transcription factors or modifying chromatin—have recently come to the fore.

In their latest study, published in the July 15, 2011, issue of Genes & Development, researchers at the Stowers Institute for Medical Research discovered that the highly conserved coactivator SAGA, best characterized for lending a helping hand during the early steps of transcriptional initiation in yeast, plays an important role in tissue-specific gene expression in fruit flies.

“It came as a real surprise,” says Jerry Workman, Ph.D., the Stowers investigator who led the study. “Based on what we knew from yeast and the fact that SAGA is found in every fruit fly cell, we predicted that it would be play a more general role. ”

Discovered in Workman’s lab in the 1990s, the multi-functional SAGA, short for Spt-Ada-Gcn5-Acetyl transferase, regulates numerous cellular processes through coordination of multiple post-translational histone modifications. For example, it attaches acetyl tags to nucleosomes, the histone spools that keep DNA neatly organized, displacing them from active promoter areas and allowing the transcription machinery to move in instead. It also removes so called ubiquitin moieties from histone H2B assisting with the transition from the initiation stages to the elongation phase.

“In yeast, SAGA is thought to control transcription of approximately 10 percent of genes, most of which are involved in responses to external stresses,” says Workman. “It is also associated with human oncogenes and tumor-suppressor genes.” Aside from its potential involvement in the pathogenesis of cancer, SAGA takes on an important role during the development of multicellular organisms in general.

“A lot is known about how SAGA regulates genes expression in single-celled yeast but we wondered whether SAGA would have different gene targets in different cells, and if so—how would it be targeted to those different genes?” says postdoctoral researcher and first author Vikki M. Weake, Ph.D. To learn more about SAGA’s involvement in developmental gene expression she decided to study the composition and localization of the SAGA complex in muscle and neuronal cells of late stage embryos of the fruit fly Drosophila.

Using a Chip-seq approach to determine SAGA’s genome-wide distribution, Weake found that SAGA was associated with considerably more transcription factors in muscle compared to neurons. “The composition of the 20-subunit SAGA complex did not change in the two tissues we examined, even though SAGA was targeted to different genes in each cell type,” say Weake. Which to her suggested that SAGA is targeted to different genes by specific interactions with transcription factors in muscle and neurons, rather than by differences in the composition of the complex itself.

When she took a closer look, she found SAGA predominantly in close proximity of RNA Polymerase II not only at promoters, the assembly site of the transcription initiation complex, but also within transcribed sequences. “SAGA had previously been observed on the coding regions of some inducible genes in yeast but our findings suggest that SAGA plays a general role in some aspect of transcription elongation at most genes in flies,” she says.

In an unexpected twist, Weake detected SAGA together with polymerase at the promoters of genes that appear not to be transcribed and that therefore may contain a paused, or stalled polymerase. Paused RNA polymerase II, preloaded at the transcription start site and ready to go at a moment’s notice, is often found on developmentally regulated genes.

“Pausing is not as prevalent in yeast as it is in metazoans,” explains Workman. “It allows genes to be synchronously and uniformly induced. The presence of SAGA with polymerase that has initiated transcription but is paused prior to elongation suggests a prominent function for SAGA in orchestrating tissue-specific gene expression.”

“It has only recently become clear in the scientific community that the release of paused polymerase II is commonly regulated and the mechanisms are still being identified,” says Stowers assistant investigator Julia Zeitlinger, Ph.D., who was the first to discover stalled polymerase on developmentally regulated genes. “The study led by Vikki Weake suggests that SAGA could play a role in this, which is very exciting.”

Researchers who also contributed to the work include Jamie O. Dyer, Christopher Seidel, Andrew Box, Selene K. Swanson, Allison Peak, Laurence Florens, Michael P. Washburn and Susan M. Abmayr.

The study was supported by the NIGMS and funding from the Stowers Institute for Medical Research.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife Virginia opened the Institute in2000. Since then, the Institute has spent over a half billion dollars in pursuit of its mission.

Currently the Institute is home to nearly 500 researchers and support personnel; over 20 independent research programs; and more than a dozen technology development and core facilities. Learn more about the Institute at http://www.stowers.org.

Gina Kirchweger | Newswise Science News
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>