Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unfolding pathogenesis in Parkinson’s – Breakthrough suggests damaged proteins travel between cells

19.01.2011
The misfolding of abnormal proteins in brain cells is a key element in Parkinson’s disease development. A recent study suggests that the sick proteins slowly move between cells, eventually triggering the destruction of the new host cell.

The discovery could potentially lead to new therapeutic strategies for neurodegenerative diseases aimed at blocking the spread of protein misfolding throughout the brain.

The study, published in the Journal of Clinical Investigation, reveals that damaged alpha-synuclein proteins (which are implicated in Parkinson’s disease) can spread in a ‘prion-like’ manner, an infection model previously described for diseases such as BSE (mad cow disease).

“This is a significant step forward in our understanding of the potential role of cell-to-cell transfer of alpha-synuclein in Parkinson’s disease pathogenesis and we are very excited about the findings”, says Professor Patrik Brundin at Lund University, Sweden, who led a team of investigators from research centres in Denmark, France and Portugal.

A previous observation that aggregated alpha-synuclein protein gradually appears in healthy young neurons transplanted to the brains of Parkinson’s patients initially gave rise to the group’s hypothesis of cell-to-cell protein transfer. The theory has now been tested in several cell culture experiments. Dr Christian Hansen, one of the key investigators, explains the importance of the new findings:

“We have now shown that alpha-synuclein not only can transfer from one cell to another, but also that the transferred protein can seed aggregation of alpha-synuclein in recipient cells as well. This could be an important mechanism for the spread of the pathology.”

Transplant trials in mice, performed by Dr Elodie Angot, lead investigator for animal modelling in the study, strengthened the theory of cell-to-cell transfer: “Six months after Parkinson’s disease model mice were transplanted with healthy dopamine neurons, we found that the new brain cells contained human alpha-synuclein, indicating cell-to-cell transfer from the host brain to the transplants.”

These findings add further support to the research group’s hypothesis that protein aggregates crossing cellular membranes contribute to the pathogenesis of neurodegenerative diseases.

Patrik Brundin concludes, “We are one step closer to understanding how the neuropathology spreads throughout the nervous system in Parkinson’s disease, which opens up avenues for new treatments. Hopefully, in the future we will be able to inhibit this spread and slow down the relentless disease progression and worsening of symptoms in patients.”

Corresponding author: Patrik Brundin, Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, tel. +46 768 865757, +46 46 222 05 29, patrik.brundin@med.lu.se

Journal of Clinical Invesitgation article: ‘a-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells’, J Clin Invest. doi:10.1172/JCI43366.

Megan Grindlay | idw
Further information:
http://www.vr.se
http://www.jci.org/articles/view/43366

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>