Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unfolding pathogenesis in Parkinson’s – Breakthrough suggests damaged proteins travel between cells

The misfolding of abnormal proteins in brain cells is a key element in Parkinson’s disease development. A recent study suggests that the sick proteins slowly move between cells, eventually triggering the destruction of the new host cell.

The discovery could potentially lead to new therapeutic strategies for neurodegenerative diseases aimed at blocking the spread of protein misfolding throughout the brain.

The study, published in the Journal of Clinical Investigation, reveals that damaged alpha-synuclein proteins (which are implicated in Parkinson’s disease) can spread in a ‘prion-like’ manner, an infection model previously described for diseases such as BSE (mad cow disease).

“This is a significant step forward in our understanding of the potential role of cell-to-cell transfer of alpha-synuclein in Parkinson’s disease pathogenesis and we are very excited about the findings”, says Professor Patrik Brundin at Lund University, Sweden, who led a team of investigators from research centres in Denmark, France and Portugal.

A previous observation that aggregated alpha-synuclein protein gradually appears in healthy young neurons transplanted to the brains of Parkinson’s patients initially gave rise to the group’s hypothesis of cell-to-cell protein transfer. The theory has now been tested in several cell culture experiments. Dr Christian Hansen, one of the key investigators, explains the importance of the new findings:

“We have now shown that alpha-synuclein not only can transfer from one cell to another, but also that the transferred protein can seed aggregation of alpha-synuclein in recipient cells as well. This could be an important mechanism for the spread of the pathology.”

Transplant trials in mice, performed by Dr Elodie Angot, lead investigator for animal modelling in the study, strengthened the theory of cell-to-cell transfer: “Six months after Parkinson’s disease model mice were transplanted with healthy dopamine neurons, we found that the new brain cells contained human alpha-synuclein, indicating cell-to-cell transfer from the host brain to the transplants.”

These findings add further support to the research group’s hypothesis that protein aggregates crossing cellular membranes contribute to the pathogenesis of neurodegenerative diseases.

Patrik Brundin concludes, “We are one step closer to understanding how the neuropathology spreads throughout the nervous system in Parkinson’s disease, which opens up avenues for new treatments. Hopefully, in the future we will be able to inhibit this spread and slow down the relentless disease progression and worsening of symptoms in patients.”

Corresponding author: Patrik Brundin, Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, tel. +46 768 865757, +46 46 222 05 29,

Journal of Clinical Invesitgation article: ‘a-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells’, J Clin Invest. doi:10.1172/JCI43366.

Megan Grindlay | idw
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>