Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected Hydrides Become Stable Metals at Pressure Near One Quarter Required to Metalize Pure Hydrogen Alone

15.10.2009
From detailed assessments of electronic structure, researchers at the University at Buffalo, Cornell University, Stony Brook University and Moscow State University discovered that unexpected hydrides violating standard valence rules, such as LiH6 and LiH8, become stable metals at a pressure approximately one quarter of that required to metalize pure hydrogen itself; findings that were published in an October 5, 2009 early edition of the Proceedings of the National Academy of Sciences.

The paper, entitled "A little bit of lithium does a lot for hydrogen," presents the first prediction of stable LiHn hydrides (LiH2, LiH6, LiH8). These hypothetical materials demonstrate that nontraditional stoichiometries can considerably expand the view of chemical bonding already under moderate pressure.

Metallic hydrogen, believed to be stable at high pressures, is theorized to be a superconductor at record high temperatures of at least a few hundred Kelvin (room temperature or higher). Due to its high (100%) hydrogen content and high density it is the ultimate energy storage material – if it can be synthesized in large quantities and subsequently brought to ambient conditions in the same metallic form.

For decades, researchers at the top research institutions around the world have predicted exotic properties for metallic hydrogen, but no credible reports of experimental synthesis of solid metallic hydrogen ever appeared because of two primary obstacles. First, metallization of hydrogen requires pressures of about four million atmospheres, which was out of reach of static compression techniques. Extreme pressures, even if they could be reached, imply that only tiny amounts of the material can be prepared, which would be of little practical use. Second, the recovery of this high pressure material to ambient pressure will be almost certainly problematic.

Work of Eva Zurek, assistant professor at the University at Buffalo, her former Cornell University colleagues Roald Hoffmann and Neil W. Ashcroft, in collaboration with Professor Artem R. Oganov and his colleague Andiry O. Lyakhov at Stony Brook University, offers surprising new optimism.

"Synthesis of metallic hydrogen has long been a dream of physicists. A dream that is now one big step closer, thanks to this theoretical work," says Professor Oganov.

"There are fundamental reasons to be excited about this form of metallic hydrogen. Light nucleus of hydrogen behaves like a quantum particle-wave, making it possible that there will be altogether new states of matter, simultaneously superconducting and superfluid."

To uncover these findings, Zurek tapped the powerful computational methods developed by Oganov and Lyakhov – methods which allow one to predict the structure and composition of new stable compounds before they are synthesized in the lab. What Zurek found was that, while LiH is a simple and well-known material at normal conditions, very unusual chemistry appears at pressures above one million atmospheres.

Unexpected hydrogen-rich metallic compounds, such as LiH2, LiH6 and LiH8 become stable. Many of their properties would be similar to those of the long-sought metallic hydrogen, but conditions of synthesis can be readily achieved in the lab. The study also shows a way to prepare metallic almost-hydrogen for possible practical use.

"Finding elements that would form such compounds at still lower pressures is now the most realistic solution to the metallic hydrogen problem and opens the door to a world of new chemistry, where little can be anticipated with traditional chemical concepts – no one would have expected LiH8 , LiH6 or LiH2 to be stable compounds," says Oganov. "It is possible that new important chemical rules will be found along this exploratory path. And who knows, maybe one day this will lead us to room-temperature superconductivity and new twists in the search for hydrogen storage materials."

Greg Filiano | Newswise Science News
Further information:
http://www.stonybrook.edu
http://www.pnas.org/content/early/2009/10/02/0908262106.full.pdf+html

Further reports about: Hydrides Hydrogen LiH2 LiH6 LiH8 Metals computational method metallic hydrogen

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>