Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected flexibility found in odorant molecules

27.06.2016

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter at the Center for Free-Electron Laser Science and from the Hamburg Centre for Ultrafast Imaging (CUI) led by Melanie Schnell have unraveled the complex conformational landscape of an odorant biomolecule.


Structure of the most stable globular form of citronellal.

© S. R. Domingos / MPI for the Structure and Dynamics of Matter

The science of the scent is shrouded in mystery. How our body interprets odor is still a subject of active debate worldwide. We do know however, that the functionality of a specific biomolecule is directly related to how the molecule “fits” in its target biological receptor, much like a key that only fits in a certain door lock. Many biochemical processes are governed by this so-called lock-and-key mechanism. The size, shape and flexibility of the key are what defines how good it binds to its target, i.e., can it or can it not open the right door?

To shed some light on these mechanisms, the researchers performed a high-resolution rotational spectroscopy study using citronellal, a versatile biochemical precursor that naturally appears in many plant oils. It has a distinct lemon scent and is often exploited in the cosmetics industry.

The researchers discovered that this molecule can adopt an impressive number of shapes simply by rotation around five single carbon-carbon chemical bonds. Those orchestrated rotations result in an extraordinarily large number of stable forms of the molecule.

A total of fifteen forms have been identified. “We show evidence that this incredibly flexible system has a preference for globular shapes, i.e., it likes to fold on itself,” says Sérgio Domingos, first author of this work. “This observation allowed us to derive important information concerning the possible interactions of this molecule with its biological receptors.”

The number of conformations (keys) observed for this molecule constitutes a world record for the microwave spectroscopy community. “The extraordinary shape-shifting ability of this odorant molecule provides particular insights on the relation between structure and function of a biomolecule. Not only we found fifteen keys, but we also know which ones might fit better in the door lock,” concludes group leader Melanie Schnell.

Contact persons:

Dr. Sérgio Domingos
Max Planck Institute for the Structure and Dynamics of Matter
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6233
sergio.domingos@mpsd.mpg.de

PD Dr. Melanie Schnell
Max Planck Institute for the Structure and Dynamics of Matter
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6240
melanie.schnell@mpsd.mpg.de

Original publication:

S. R. Domingos, C. Pérez, C. Medcraft, P. Pinacho, and M. Schnell, "Flexibility unleashed in acyclic monoterpenes: conformational space of citronellal revealed by broadband rotational spectroscopy," Physical Chemistry Chemical Physics 18 (25), 16682-16689 (2016); DOI: 10.1039/C6CP02876D

Weitere Informationen:

http://dx.doi.org/10.1039/C6CP02876D Original publication
http://www.mpsd.mpg.de/en/research/irg/ccm Research group of PD Dr. Melanie Schnell
http://www.mpsd.mpg.de/en Max Planck Institute for the Structure and Dynamics of Matter

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Further reports about: Laser Max-Planck-Institut biomolecule odorant spectroscopy

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>