Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected flexibility found in odorant molecules

27.06.2016

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter at the Center for Free-Electron Laser Science and from the Hamburg Centre for Ultrafast Imaging (CUI) led by Melanie Schnell have unraveled the complex conformational landscape of an odorant biomolecule.


Structure of the most stable globular form of citronellal.

© S. R. Domingos / MPI for the Structure and Dynamics of Matter

The science of the scent is shrouded in mystery. How our body interprets odor is still a subject of active debate worldwide. We do know however, that the functionality of a specific biomolecule is directly related to how the molecule “fits” in its target biological receptor, much like a key that only fits in a certain door lock. Many biochemical processes are governed by this so-called lock-and-key mechanism. The size, shape and flexibility of the key are what defines how good it binds to its target, i.e., can it or can it not open the right door?

To shed some light on these mechanisms, the researchers performed a high-resolution rotational spectroscopy study using citronellal, a versatile biochemical precursor that naturally appears in many plant oils. It has a distinct lemon scent and is often exploited in the cosmetics industry.

The researchers discovered that this molecule can adopt an impressive number of shapes simply by rotation around five single carbon-carbon chemical bonds. Those orchestrated rotations result in an extraordinarily large number of stable forms of the molecule.

A total of fifteen forms have been identified. “We show evidence that this incredibly flexible system has a preference for globular shapes, i.e., it likes to fold on itself,” says Sérgio Domingos, first author of this work. “This observation allowed us to derive important information concerning the possible interactions of this molecule with its biological receptors.”

The number of conformations (keys) observed for this molecule constitutes a world record for the microwave spectroscopy community. “The extraordinary shape-shifting ability of this odorant molecule provides particular insights on the relation between structure and function of a biomolecule. Not only we found fifteen keys, but we also know which ones might fit better in the door lock,” concludes group leader Melanie Schnell.

Contact persons:

Dr. Sérgio Domingos
Max Planck Institute for the Structure and Dynamics of Matter
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6233
sergio.domingos@mpsd.mpg.de

PD Dr. Melanie Schnell
Max Planck Institute for the Structure and Dynamics of Matter
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6240
melanie.schnell@mpsd.mpg.de

Original publication:

S. R. Domingos, C. Pérez, C. Medcraft, P. Pinacho, and M. Schnell, "Flexibility unleashed in acyclic monoterpenes: conformational space of citronellal revealed by broadband rotational spectroscopy," Physical Chemistry Chemical Physics 18 (25), 16682-16689 (2016); DOI: 10.1039/C6CP02876D

Weitere Informationen:

http://dx.doi.org/10.1039/C6CP02876D Original publication
http://www.mpsd.mpg.de/en/research/irg/ccm Research group of PD Dr. Melanie Schnell
http://www.mpsd.mpg.de/en Max Planck Institute for the Structure and Dynamics of Matter

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Further reports about: Laser Max-Planck-Institut biomolecule odorant spectroscopy

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>