Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unearthing the pathways of plasticity

06.04.2010
Lipid signaling at the synapse modulates the strength of neuronal communication in the brain

Changes in synaptic strength after repeated communication between neurons is a key mechanism for induction of learning and memory in the brain. Identifying molecules involved in this ‘synaptic plasticity’—and targeting these signaling pathways with drugs—could pave the way to augmenting learning and memory in humans.

This is particularly necessary for diseases that have been linked to deficits in synaptic plasticity and memory, such as Alzheimer’s disease. Now, Masao Ito and colleagues at the RIKEN Brain Science Institute in Wako and at the University of Tokyo have shown that lipid signals regulate synaptic plasticity in the cerebellum, a structure at the back of the brain that is involved in motor learning.

Driving depression

The major output neurons of the cerebellum are called Purkinje neurons. Repeated electrical stimulation of two separate neuronal inputs onto a Purkinje neuron—called conjunctive stimulation—leads to a reduction in this neuron’s response to subsequent stimulation of one of these inputs. This kind of synaptic plasticity is called long-term depression (LTD) of the neuron’s response. Purkinje neuron LTD has been linked to motor learning, an example of which would be learning to walk and run during early childhood in humans.

During repeated conjunctive stimulation of Purkinje neurons, calcium ions flow into the cell. These ions activate a cascade of signaling molecules, including phospholipase A2 (PLA2), an enzyme that cleaves lipids in the membrane to release a compound called arachidonic acid (AA). Three subtypes of PLA2 are present in Purkinje neurons.

While two of these isoforms seemed to play no role in LTD, the researchers observed that mice lacking the gene for the third isoform, called cPLA2á, exhibited no LTD in cerebellar brain slices after repeated electrical stimulation. Consistent with this finding, a drug called pyrrolidine-1, which blocks cPLA2á, also inhibited LTD. Because pyrrolidine-1 only inhibited LTD soon after conjunctive stimulation of the Purkinje neurons, the researchers realized that cPLA2áactivity was required—but just at that time—for induction of LTD.

Plasticity restored

Next, Ito and colleagues determined the role of AA in LTD because it is produced by PLA2 along with many other lipid signaling molecules. When they infused AA during conjunctive stimulation of the cerebellar slices, they found it rescued LTD in mice lacking the gene for cPLA2á. However, adding AA onto cerebellar slices that had not been conjunctively stimulated failed to induce LTD on its own. This suggests that LTD also requires other signaling pathways induced by conjunctive stimulation.

Delving deeper into the machinations of the pathway, the researchers then examined the role of cyclooxygenase-2 (COX-2), which is an enzyme that acts on AA to produce additional lipid signaling molecules. They observed that, as with cPLA2á inhibitors, COX-2 inhibitors blocked induction of LTD by repeated conjunctive stimulation of Purkinje neurons. Because the time during which COX-2 inhibitors could block LTD—right after conjunctive stimulation, but not later—was equivalent to the time during which the cPLA2á inhibitors were able to prevent LTD, the researchers conclude that both enzymes, COX-2 and cPLA2á, participate in the same signaling pathway to drive LTD induction.

Investigating further, Ito and colleagues then focused on prostaglandin (PG), which COX-2 produces from AA. They observed that PG rescued LTD not only in the presence of COX-2 inhibitors, but also in brain slices lacking the cPLA2á gene. This suggests that this lipid signaling pathway induces LTD owing to its eventual production of PG. However, when the researchers treated conjunctively stimulated cerebellar slices from normal mice with PG, LTD was not enhanced any further. The team postulates that the PG that is created within the cerebellum during conjunctive stimulation—the ‘endogenous’ PG—induces as much LTD as is possible, and this is why adding extra PG will have no additional effect on further augmenting LTD.

PG binds to and activates various types of prostanoid receptors on the surface of cells. Interestingly, though, when the researchers treated conjunctively stimulated cerebellar slices with presently available inhibitors of these receptors, none of them affected LTD. Ito suspects “that the LTD induction is mediated by an as-yet-unidentified prostanoid receptor or by a direct interaction of PG with receptors for the excitatory neurotransmitter glutamate, which mediate the response of Purkinje neurons to stimulation of one of their inputs."

The eyes have it

Ito and colleagues next tested whether this lipid signaling pathway, which plays a key role in LTD induction, is also involved in the optokinetic eye movement response (OKR), a type of motor learning of the eye.

When observing an oscillating screen, mice learn to increase their eye movements over time as they follow the motion of the screen. This is called OKR adaptation. Scientists can measure these eye movements and then calculate the rate of OKR adaptation. In mice treated with COX-2 inhibitors, Ito and colleagues observed very low adaptation rates, suggesting that their motor learning of OKR was less robust than in untreated animals. Because COX-2 inhibitors also blocked LTD, these findings provide a strong link between defects in LTD and motor learning dysfunction.

If this signaling pathway is also involved in other types of learning and memory, targeting the pathway with drugs that activate it could be a way to drive learning and memory during disease. “Although it is still unclear how LTD is converted to a permanent memory,” says Ito, “our findings add a novel element to the intricate signal transduction pathways for LTD induction.”

Masao Ito

Masao Ito was born in Nagoya, Japan, in 1928. He graduated from University of Tokyo with an MD in 1953, and received his PhD in 1959 from the same institution. Until 1962, we worked in the John C. Eccles laboratory at the Australian National University. He then returned to the University of Tokyo as an associate professor, became professor in 1970, and later served as medical dean from 1986 to 1988. He joined RIKEN in 1989, and became the founding director of the Brain Science Institute in 1997. After leaving the post in 2003, he has acted as a senior advisor. His achievements include discovery of the exclusive inhibitory nature of cerebellar Purkinje cells, establishment of the vestibuloocular reflex as a model system of cerebellar motor adaptation, and experimental verification of long-term depression in Purkinje cells and analyses of its signal transduction mechanism.

Journal information

1. Le T.D., Shirai, Y., Okamoto, T., Tatsukawa, T., Nagao, S., Shimizu, T. & Ito, M. Lipid signaling in cytosolic phospholipase A2á–cyclooxygenase-2 cascade mediates cerebellar long-term depression and motor learning. Proceedings of the National Academy of Sciences USA 107, 3198–3203 (2010).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/hom/6236
http://www.researchsea.com

More articles from Life Sciences:

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht If solubilty is the problem - Mechanochemistry is the solution
25.05.2018 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

If solubilty is the problem - Mechanochemistry is the solution

25.05.2018 | Life Sciences

Investigating cell membranes: researchers develop a substance mimicking a vital membrane component

25.05.2018 | Interdisciplinary Research

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>