Unearthing the path to diabetes

A molecular mechanism that links diet, obesity and diabetes involves depletion of specialized ‘transporter proteins’, a Japanese–American team has found1. Transporter proteins deliver glucose to so-called ‘beta cells’ of the pancreas, which produce the hormone insulin to help the body regulate its sugar levels. The work opens the way to new treatments for diabetes since ensuring sufficient numbers of glucose transporter (Glut) proteins on their outer surface could improve beta cell function.

In both humans and animals, there is a widespread and accepted connection between high-fat diets, obesity and susceptibility to type 2 (or adult onset) diabetes (Fig. 1). Until now, however, the causal links were not clear, particularly at a molecular level, explains team member Kazuaki Ohtsubo from the RIKEN Advanced Science Institute in Wako.

A hallmark of the condition is a drop in the effectiveness of insulin in lowering blood sugar levels, known as insulin resistance. Previous work by other researchers had determined that type 2 diabetes is accompanied by a loss of sensitivity of beta cells to increasing glucose levels. Rising levels of glucose normally trigger secretion of insulin and are detected by greater amounts of sugar moving into beta cells. A decrease in Glut proteins, hence a lower capacity for glucose transport, could therefore explain defective insulin secretion. Interestingly, mice that lack the enzyme GnT-4a, which catalyzes the linkage of Glut proteins to the cell surface, develop type 2 diabetes. In earlier work2, Ohtsubo also showed that a high-fat diet can induce a deficiency of GnT-4a.

To investigate these earlier findings in detail, Ohtsubo and his colleagues from the University of California, USA, investigated the sequence of molecular events in pancreatic beta cells of mice and humans. They found that high levels of fatty acids led to nuclear exclusion of the proteins that facilitate transcription of the genes for GnT-4a and Glut. The resulting deficiency of the GnT-4a enzyme led to many of the symptoms of diabetes. This could be alleviated in mice by adding the human gene for GnT-4a. The researchers also observed that the molecular pathways activated in the mice that developed type 2 diabetes were similar to those that were active in human type 2 diabetes.

“We are already searching for small chemical compounds which activate the expression of GnT-4a in pancreatic beta cells under high-free fatty acids conditions,” says Ohtsubo. “These compounds could improve beta cell function and should be good candidates for new types of drugs for diabetes.”

The corresponding author for this highlight is based at the Disease Glycomics Team, RIKEN Advanced Science Institute

Media Contact

gro-pr Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors