Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unearthing chemistry’s rare gems

Combining rare-earth clusters with traditional metal catalysts reveals secrets of chemical transformation

Metal catalysts, with their ability to both speed up chemical reactions and influence product structures, have revolutionized manufacturing of essential goods such as petroleum and pharmaceuticals. The constant search for new catalysts that can improve existing methods has spurred chemists to investigate a relatively unknown part of the periodic table—the rare-earth elements.

Rare earths, named for the uncommon minerals in which they were first discovered, possess remarkable chemical properties owing to their internal electronic configuration. Now, Zhaomin Hou from the RIKEN Advanced Science Institute in Wako and colleagues have used an yttrium-based rare-earth cluster to generate a new series of complexes that hold vital structural clues towards improving catalytic reactions.

Hou and co-workers studied one of industry’s most critical reactions: the reduction of carbon monoxide (CO) molecules attached to transition metal catalysts. In this process, a reagent known as a hydride causes CO to gain electrons or hydrogen, producing useful liquid hydrocarbons. Scientists know little about the mechanism of this reaction, however, and industry greatly desires more efficient catalysts.

First, Hou’s team developed a new molecular rare-earth hydride—a large cluster containing several yttrium, hydrogen, and organic groups—to investigate CO reduction. According to Hou, the rare-earth hydride is extremely reactive towards molecules with triple bonds such as CO.

When mixed together, the rare-earth hydride incorporated the metal–CO complex into its own framework, creating structurally well-defined organic–multimetallic molecules with various degrees of CO reduction. The researchers believe that these new hybrid compounds are important intermediates in the transformation of CO into hydrocarbon molecules.

They also found that different metal–CO complexes generated unique structures with the rare-earth hydride. For example, tungsten–CO complexes added to the yttrium cluster as intact units by bonding oxygen atoms to yttrium sites. With a rhodium–CO complex, however, the C–O bond is cleaved after addition; carbon groups joined directly to yttrium while oxygen atoms moved deeper into the cluster framework.

The ability of rare-earth hydrides to capture ‘snapshots’ of catalytic reactions through an extraordinary variety of metal, carbon, and oxygen bonding interactions promises to spark development of better organic synthetic techniques, a prospect that Hou and colleagues are actively investigating.

“These new organic–multimetallic structures provide well-defined examples of the individual first steps in the reduction of coordinated CO,” says Hou. “And, our findings may give clues for the design of new catalysts for selective synthesis of hydrocarbons from CO reduction.”

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute.

Saeko Okada | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.
24.10.2016 | Max-Planck-Institut für Hirnforschung

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>