Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unearthing chemistry’s rare gems

14.12.2009
Combining rare-earth clusters with traditional metal catalysts reveals secrets of chemical transformation

Metal catalysts, with their ability to both speed up chemical reactions and influence product structures, have revolutionized manufacturing of essential goods such as petroleum and pharmaceuticals. The constant search for new catalysts that can improve existing methods has spurred chemists to investigate a relatively unknown part of the periodic table—the rare-earth elements.

Rare earths, named for the uncommon minerals in which they were first discovered, possess remarkable chemical properties owing to their internal electronic configuration. Now, Zhaomin Hou from the RIKEN Advanced Science Institute in Wako and colleagues have used an yttrium-based rare-earth cluster to generate a new series of complexes that hold vital structural clues towards improving catalytic reactions.

Hou and co-workers studied one of industry’s most critical reactions: the reduction of carbon monoxide (CO) molecules attached to transition metal catalysts. In this process, a reagent known as a hydride causes CO to gain electrons or hydrogen, producing useful liquid hydrocarbons. Scientists know little about the mechanism of this reaction, however, and industry greatly desires more efficient catalysts.

First, Hou’s team developed a new molecular rare-earth hydride—a large cluster containing several yttrium, hydrogen, and organic groups—to investigate CO reduction. According to Hou, the rare-earth hydride is extremely reactive towards molecules with triple bonds such as CO.

When mixed together, the rare-earth hydride incorporated the metal–CO complex into its own framework, creating structurally well-defined organic–multimetallic molecules with various degrees of CO reduction. The researchers believe that these new hybrid compounds are important intermediates in the transformation of CO into hydrocarbon molecules.

They also found that different metal–CO complexes generated unique structures with the rare-earth hydride. For example, tungsten–CO complexes added to the yttrium cluster as intact units by bonding oxygen atoms to yttrium sites. With a rhodium–CO complex, however, the C–O bond is cleaved after addition; carbon groups joined directly to yttrium while oxygen atoms moved deeper into the cluster framework.

The ability of rare-earth hydrides to capture ‘snapshots’ of catalytic reactions through an extraordinary variety of metal, carbon, and oxygen bonding interactions promises to spark development of better organic synthetic techniques, a prospect that Hou and colleagues are actively investigating.

“These new organic–multimetallic structures provide well-defined examples of the individual first steps in the reduction of coordinated CO,” says Hou. “And, our findings may give clues for the design of new catalysts for selective synthesis of hydrocarbons from CO reduction.”

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute.

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6108
http://www.researchsea.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>