Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding soil nitrogen management using synchrotron technology

02.10.2013
How different fertilizers affect soil organic matter and what that means for crops

As food security becomes an increasingly important global issue, scientists are looking for the best way to maintain the organic matter in soils using different methods of fertilization and crop rotation.

Increasing the organic matter in soils is key to growing crops for numerous reasons, including increased water-holding capacity and improved tilth. Scientists have recently used the Canadian Light Source (CLS) to evaluate the effects of various sources of supplemental nitrogen fertilizer on the chemical composition of soil organic matter. Results of their experiments to study this question were recently published in the journal Biogeochemistry.

"The big question I had when we started this research was how different nitrogen fertilizer supplements affected the overall soil organic matter composition," says Dr. Adam Gillespie, a post-doctoral fellow working with Agriculture and Agri-Food Canada (AAFC). "We also wanted to look at how we could optimize the use of nitrogen, since nitrogen fertilizers can be a solution, but also a problem."

Gillespie and his colleagues from AAFC, the University of Saskatchewan, St. Francis Xavier University, Lakehead University, and the CLS tested the hypothesis that the chemical composition of SOM would be different if the supplemental nitrogen originated from a synthetic fertilizer product, animal manure or a legume source.

The invention of synthetic fertilizer, where nitrogen is taken from an inert chemical form in the air and turned into ammonia, has had a profound effect on nitrogen cycling. In fact, astonishingly, humans have doubled the amount of available nitrogen in the biosphere.

According to Gillespie, 40 per cent of people alive today derive their nitrogen nutrition from synthetically-fixed fertilizer.

"Indeed, fertilization has had a profound effect on humanity as a whole. The downside of nitrogen fertilization is that run-off of nitrates to the surface waters or leaching of nitrates to groundwater cause problems with water quality and eutrophication in lakes. The recent algal blooms on Lake Winnipeg are a prime example of this nitrogen pollution. Secondly, nitrogen can be converted to nitrous oxide, which is an extremely potent greenhouse gas. Before fertilizers, nitrogen was introduced into the soil through rainfall or native pulse crops, so when fertilizer was developed, it revolutionized farming."

He cites three common ways for producers to introduce nitrogen into soil: synthetic fertilizer; manure or other organic amendments; and through cultivation of nitrogen fixing pulse crops. For all these methods, the nitrogen comes in different forms. Synthetic fertilizer is available as a variety of commercial products, with different nitrogen-release times, whereas manure and pulse crops need to be broken down by microbial decomposition before nitrogen becomes available.

Gillespie explained that fungi is great at breaking down lignin in plants and bacteria can help break down the rest, but adds, "nitrogen shifts the ability of bacteria to compete, so we are hoping to find out more about the role of fungi in the decomposition of organic matter in soil". Manure and pulse crops also add more organic matter to the soil, a benefit not realized using synthetic fertilizers.

The results of the experiment showed that organic matter in soil was heavily influenced by the type of supplemental nitrogen added.

"The overall trend showed that N additions allowed crop residues to decompose more completely. Specifically, we found less plant-type compounds in soils receiving nitrogen. In addition, we found that among the different nitrogen treatments, manure-enriched soil had the highest amounts of compounds related to microbial turnover," said Gillespie. The findings will prove important for farmers and scientists alike as they work to maximize the potential growth of food while maintaining healthy soils.

Mark Ferguson | EurekAlert!
Further information:
http://www.lightsource.ca

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>