Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding soil nitrogen management using synchrotron technology

02.10.2013
How different fertilizers affect soil organic matter and what that means for crops

As food security becomes an increasingly important global issue, scientists are looking for the best way to maintain the organic matter in soils using different methods of fertilization and crop rotation.

Increasing the organic matter in soils is key to growing crops for numerous reasons, including increased water-holding capacity and improved tilth. Scientists have recently used the Canadian Light Source (CLS) to evaluate the effects of various sources of supplemental nitrogen fertilizer on the chemical composition of soil organic matter. Results of their experiments to study this question were recently published in the journal Biogeochemistry.

"The big question I had when we started this research was how different nitrogen fertilizer supplements affected the overall soil organic matter composition," says Dr. Adam Gillespie, a post-doctoral fellow working with Agriculture and Agri-Food Canada (AAFC). "We also wanted to look at how we could optimize the use of nitrogen, since nitrogen fertilizers can be a solution, but also a problem."

Gillespie and his colleagues from AAFC, the University of Saskatchewan, St. Francis Xavier University, Lakehead University, and the CLS tested the hypothesis that the chemical composition of SOM would be different if the supplemental nitrogen originated from a synthetic fertilizer product, animal manure or a legume source.

The invention of synthetic fertilizer, where nitrogen is taken from an inert chemical form in the air and turned into ammonia, has had a profound effect on nitrogen cycling. In fact, astonishingly, humans have doubled the amount of available nitrogen in the biosphere.

According to Gillespie, 40 per cent of people alive today derive their nitrogen nutrition from synthetically-fixed fertilizer.

"Indeed, fertilization has had a profound effect on humanity as a whole. The downside of nitrogen fertilization is that run-off of nitrates to the surface waters or leaching of nitrates to groundwater cause problems with water quality and eutrophication in lakes. The recent algal blooms on Lake Winnipeg are a prime example of this nitrogen pollution. Secondly, nitrogen can be converted to nitrous oxide, which is an extremely potent greenhouse gas. Before fertilizers, nitrogen was introduced into the soil through rainfall or native pulse crops, so when fertilizer was developed, it revolutionized farming."

He cites three common ways for producers to introduce nitrogen into soil: synthetic fertilizer; manure or other organic amendments; and through cultivation of nitrogen fixing pulse crops. For all these methods, the nitrogen comes in different forms. Synthetic fertilizer is available as a variety of commercial products, with different nitrogen-release times, whereas manure and pulse crops need to be broken down by microbial decomposition before nitrogen becomes available.

Gillespie explained that fungi is great at breaking down lignin in plants and bacteria can help break down the rest, but adds, "nitrogen shifts the ability of bacteria to compete, so we are hoping to find out more about the role of fungi in the decomposition of organic matter in soil". Manure and pulse crops also add more organic matter to the soil, a benefit not realized using synthetic fertilizers.

The results of the experiment showed that organic matter in soil was heavily influenced by the type of supplemental nitrogen added.

"The overall trend showed that N additions allowed crop residues to decompose more completely. Specifically, we found less plant-type compounds in soils receiving nitrogen. In addition, we found that among the different nitrogen treatments, manure-enriched soil had the highest amounts of compounds related to microbial turnover," said Gillespie. The findings will prove important for farmers and scientists alike as they work to maximize the potential growth of food while maintaining healthy soils.

Mark Ferguson | EurekAlert!
Further information:
http://www.lightsource.ca

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>