Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New understanding of protein's role in brain

26.03.2010
Researchers discover that a modified protein plays a key role in memory processes

How do we process thoughts and store memories? A team of researchers headed by Dr. Nahum Sonenberg of McGill's Department of Biochemistry and Goodman Cancer Centre has discovered that brains in mammals modify a particular protein in a unique way, which alters the protein's normal function. This discovery represents an important step in understanding how our brains work.

When our memories are being formed, nerve cells, or neurons, communicate with each other through electrical impulses at specialized connections. To strengthen these connections, the neurons require new proteins – key molecules needed for all forms of cellular activity. The protein in question, 4E-BP2, controls the process of producing new proteins in the nervous system.

This process, known as protein synthesis or translation, is the major focus of research in Sonenberg's laboratory. Before the team's discovery, no one knew 4E-BP2 could be chemically altered in such a manner as the team described in its work, much less that this could have an effect on neuron function.

According to the lead researcher Dr. Michael Bidinosti, a recent graduate from Sonenberg's laboratory, "we found a modification to a protein that controls the cellular protein-synthesis machinery. This modification seems to affect the ability of nerve cells to communicate with each other and is thought to be part of the processes underlying memory."

He explains that study of protein synthesis and of memory are increasingly converging fields, and that the team's research is an important achievement in this arena. Collaboration was critical to the discovery as the team includes researchers from the Université de Montréal, the Montreal Neurological Institute, the University of Toronto, Baylor College of Medicine in Houston, and the University of Bergen in Norway.

"Better understanding of protein synthesis in the brain is crucial to the advancement of neuroscience, particularly as researchers discover that altered proteins may have a direct impact on the memory process," says Dr. Anthony Phillips, Scientific Director of the Canadian Institutes of Health Research (CIHR) Institute of Neurosciences, Mental Health and Addiction. "CIHR hopes that these new findings will lead to more research aimed at ultimately solving memory loss issues."

The research was published in the journal Molecular Cell on March 25, 2010, and was funded by the Canadian Institutes of Health Research and the Howard Hughes Medical Institute. Bidinosti was supported by a Postgraduate Doctoral Scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC).

William Raillant-Clark | EurekAlert!
Further information:
http://www.mcgill.ca
http://www.medicine.mcgill.ca/nahum/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>