Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding PP1, the ubiquitous enzyme

04.03.2014

The enzyme PP1 has a key role in many of the body’s healthy functions and diseases. It’s so generally important that drug developers dare not target it. In a new study in the Proceedings of the National Academy of Sciences, Brown University scientists report a big leap in understanding how PP1 interacts with other proteins to behave specifically in distinct situations. That could lead to medicines that target it for precise benefits.

In the Proceedings of the National Academy of Sciences, a team of scientists at Brown University reports a major step forward in determining the specific behavior of the ubiquitous enzyme PP1 implicated in a wide range of diseases including cancer.


The Enzyme PP1, the tan mass above, is everywhere in the body and has a role in nearly every biological process. That role is shaped more than 200 regulatory Proteins that bind to PP1, including one called PNUTS. blue and pink above. Credit: Page lab/Brown University

PP1, whose role is to enable the passage of molecular messages among cells, is found pretty much everywhere in the body. Its wide range of responsibilities means it is essential to many healthy functions and, when things go wrong, to diseases. But its very versatility has prevented it from being a target for drug development, said Rebecca Page, associate professor of biology at Brown and the paper’s corresponding author.

“The amazing thing about PP1 is that no one has wanted to touch it for the most part as a drug target because PP1 is involved in nearly every biological process,” Page said. “It’s not like you could just target the PP1 active site for, let’s say, diabetes because then you are going to affect drug addiction, Alzheimer’s disease and all these other diseases at the same time.”

In other words, make a medicine to block PP1 in one bodily context and you’d ruin it in all other contexts. Structural biologists such as Page and Brown co-author Wolfgang Peti have therefore been eager to learn what makes PP1 behave in specific ways in specific situations.

The key is the way PP1 binds with more than 200 different regulatory proteins. Scientists know of these proteins and know the sequences of amino acids that compose them, but they don’t know their structure or how they actually guide PP1.

“The ability to predict how these PP1 interacting proteins bind PP1 from sequence alone is still missing,” Page and her colleagues wrote in PNAS.

Now, through experiments in which her team including lead author Meng Choy combined NMR spectroscopy, X-ray crystallography and techniques in biochemistry, she has learned how PP1 binds to a targeting protein called PNUTS, forming “binding motifs.” That knowledge, combined with what she learned in earlier studies about two other targeting proteins — NIPP1 and spinophilin — has allowed her team to predict how PP1 binds with 43 of the 200 regulatory proteins that give it specific behavior.

“What this work in conjunction with two of our previous structures allowed us to do was to define two entirely new motifs,” she said. “From that, comparing the sequences with the known proteins that interact with PP1 whose structures we don’t have, we were able to predict that 20 percent of them likely interact in a way that is similar to these three proteins.”

So by resolving the structure of just three proteins with PP1, Page now has the means to understand the binding of many proteins without having to resolve their structure. Instead she need only know the few motifs and the proteins’ sequences.

As for PP1’s interactions with the other 80 percent or so of regulatory proteins, those remain a mystery. But Page said the success her team has had in the lab working with PP1 and resolving key motifs makes her optimistic that those interactions can be solved, too.

In addition to Page, Choy, and Peti, the paper’s other authors are Martina Hieke, Ganesan Senthil Kumar, Greyson Lewis, Kristofer Gonzalez-DeWhitt, Rene Kessler, Benjamin Stein, and Manuel Hessenberger of Brown and Angus Nairn of Yale.

The National Institute of General Medical Sciences (grant R01GM098482) supported the research.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

David Orenstein | EurekAlert!
Further information:
http://news.brown.edu/pressreleases/2014/03/pp1

Further reports about: PP1 diseases enzyme motifs proteins regulatory sequences structure

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>