Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding how infectious diseases spread depends on unlocking secrets held in existing data

02.01.2009
Often experiments are needed to make scientific progress, but sometimes the answers lie in data already collected, requiring new analysis tools to unlock the secrets.

This applies to infectious disease transmission, main topic of a recent workshop organised by the European Science Foundation (ESF), which called for development of new mathematical and statistical tools capable of probing deeper into existing databases relating to human contact and pathogens.

"One of the most exciting conclusions we came to was the realization that vast amounts of information were already available in various data banks," said Mirjam Kretzschmar, convenor of the ESF workshop, from the Medical Centre at Utrecht University in the Netherlands.

These databanks held wide ranging information relating to the contact networks of people with various diseases, identifying the pattern of transmission, and also the genotype (total genetic sequence) of the associated pathogens, which could be bacteria or viruses, and potentially in future protozoa or micro fungi. The ESF workshop highlighted the great challenge involved in bringing all this data together, and drawing the correct conclusions from it. "It is clear now that methods are still lacking to unlock the knowledge that is immersed in these data," said Kretzschmar. "In particular we need to bridge different disciplines to meet this challenge of handling increasingly large amounts of systematically collected genetic sequence data."

The point here is that particular pathogens such as the influenza virus as identified by their genotype can have different transmission patterns - some might spread faster, and some might require closer contact between people to spread. Therefore correlating details of the unfolding contacts networks between sufferers, as a disease spreads, with the possibly evolving genotype of the pathogen involved can yield valuable insights into the molecular factors relating to transmission. Similarly the disease may become more or less severe over time, or it may affect some types of people worse than others. These factors can also be analysed, helping perhaps to identify what makes a pathogen dangerous and then hopefully predict in advance how an infection may develop and spread. This can lead to appropriate strategies to combat a disease, such as development of a vaccine or public health recommendations, for example that certain high individuals stay at home where possible.

"Research projects have shown that genotyping of pathogens can lead to insight into how risk networks are connected with each other and whether an outbreak consists of many small local outbreaks or whether we are dealing with a supra-national outbreak that requires different intervention strategies," said Kretzschmar. For example the outbreak of LGV (Lymphogranuloma venereum) among gay men in Europe during 2005 occurred in clusters and analysis showed that clusters from geographically distant cities were connected with each other. Also, the analysis of genotypes showed that the outbreak was connected to earlier cases observed in San Francisco and had been going on for a long time already. This helped coordinate intervention activities among European countries.

The conference also heard how genotyping was helping identify emerging pathogens more quickly than previously, and their likely patterns of transmission. For example genotyping enabled the insect-born virus Chikungunya and its transmission routes to be rapidly identified during a recent outbreak in Italy.

Such information can be correlated with contact tracing networks, which identify the transmission chains taken by an infection. "Two types of contact tracing were discussed," said Kretzschmar. "One was the traditional way of asking infected persons who their contacts and possible sources of infection were, and the other was tracing clusters of persons who have similar characteristics."

The latter type of contact network could be identified by taking people with similar genotypes, and also by considering people with similar types of risk behaviour that puts them at risk - gay men already with specific types of high risk behaviour being an example for LGV. "It shows that molecular typing can help uncover risk networks, especially if there is epidemiological information available that allows us to localize these networks and identify persons who are at risk but not yet infected."

The ESF workshop proved invaluable in identifying the types of data that could increase understanding of how infectious disease spreads and develops in populations, and the statistical and mathematical tools that could perform the required analysis.

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>