Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New understanding of biomarkers could lead to earlier diagnosis of fatal diseases

15.07.2011
Scientists identify molecular differences between disease-indicating proteins and those which exist naturally

A new research paper sheds light on the way antibodies distinguish between different but closely related 'biomarkers' - proteins which reveal information about the condition of the human body. This new understanding could enable pharmaceutical companies to develop new technologies for quickly diagnosing and treating fatal diseases.

All diseases have proteins, or concentrations of proteins, specifically linked to them called biomarkers. Identifying these can prove a powerful diagnostic tool. These biomarkers are detected by immunoassays – a test which mixes a substance (eg blood, urine) with antibodies, which bind to the protein if it is present. The antibodies can then be measured to identify the level of the biomarker, which in turn indicates the presence and extent of an illness.

Antibodies bind with high specificity to one protein molecule or a limited group of molecules (eg hormones), which is why we can use antibodies to test for specific biomarkers. Problems arise when they bind to groups of similar hormones that are associated with normal bodily changes. This leads to false positives and therefore unreliable information.

New research, carried out by the National Physical Laboratory (NPL), the University of Edinburgh and industrial partners from the UK (Mologic ltd), US (IBM's Watson Research Center) and the Netherlands (Pepscan Presto BV), changes this. The research shows how different proteins are made up, and therefore how they can be identified reliably.

The highly sought solution is 'intelligent selection' of antibody-specific interaction sites on hormones that can differ from similar sites of other hormones by just one molecule.

The research focused on hCG (human chorionic gonadotropin), a hormone produced during pregnancy. A subunit of hCG - hCGâ - is secreted by some cancers, meaning detection can give early warning of tumors.

hCG is very similar to other reproductive hormones, known as LH and FSH, which are always present in the body. Detecting hCG can be confused with these other hormones, leading to unreliable results.

The immunoassay antibodies bind to a tiny part of the hormone called an epitope. Hormones are made up of thousands of 'building blocks', with epitopes making up less than 10 of these blocks. The difference between hormones can be as little as one of these epitope blocks.

The research team took a variety of precise measurements of the hCG hormone, drawing on NPL's world-leading measurement technology and expertise, which were supported by atomistic computer simulations.

The team showed how very subtle, atomic level characteristics define the antibody selectivity in closely related epitopes of different proteins. They identified that specific antibodies are highly selective in immunoassays and can distinguish between hCGâ and closely related LH fragments.

Understanding these structural differences explains the observed selectivity in the full hormones. Armed with this knowledge, scientists can develop intelligent epitope selection to achieve the required assay performance. This means reliable tests can be developed to indentify the presence of different hormones – in this case the presence of hCGâ which indicates cancer, as opposed to LH, which is always present.

The advances described in this research will enable development of further immunoassays to identify other biomarkers from similar groups. Pharmaceutical companies could use this to develop new technologies for diagnostics and clinical disease treatments, for example tests for tumour as part of routine screenings.

Max Ryadnov, Principal Research Scientist at the National Physical Laboratory, says "This work answers one of the big questions in distinguishing biomarkers which are critical for identifying and treating serious diseases. We hope this breakthrough will underpin the development of a range of new diagnostic techniques and treatment."

Prof Paul Davis, Chief Scientific Officer of Mologic ltd – a UK diagnostic company that initiated the study, said: "It was a great collaborative effort, and it stands as a fine example of what can be achieved when motivated scientists work together openly across boundaries."

This research is a part of the NPL-led international research project 'Multiscale measurements in biophysical systems', which is jointly funded by NPL and the Scottish Universities Physics Alliance.

The full paper - Antibody Recognition of a human chorionic gonadotropin epitope (hCG{beta}66-80) depends on local structure retained in the free peptide - will be published by the Journal of Biological Chemistry – the world's premier and most cited forum for Biological Chemistry and Molecular Biology on 15th July 2011

J. Biol. Chem. 2011 286: 25016-25026

David Lewis | EurekAlert!
Further information:
http://www.npl.co.uk

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>