Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New understanding of biomarkers could lead to earlier diagnosis of fatal diseases

15.07.2011
Scientists identify molecular differences between disease-indicating proteins and those which exist naturally

A new research paper sheds light on the way antibodies distinguish between different but closely related 'biomarkers' - proteins which reveal information about the condition of the human body. This new understanding could enable pharmaceutical companies to develop new technologies for quickly diagnosing and treating fatal diseases.

All diseases have proteins, or concentrations of proteins, specifically linked to them called biomarkers. Identifying these can prove a powerful diagnostic tool. These biomarkers are detected by immunoassays – a test which mixes a substance (eg blood, urine) with antibodies, which bind to the protein if it is present. The antibodies can then be measured to identify the level of the biomarker, which in turn indicates the presence and extent of an illness.

Antibodies bind with high specificity to one protein molecule or a limited group of molecules (eg hormones), which is why we can use antibodies to test for specific biomarkers. Problems arise when they bind to groups of similar hormones that are associated with normal bodily changes. This leads to false positives and therefore unreliable information.

New research, carried out by the National Physical Laboratory (NPL), the University of Edinburgh and industrial partners from the UK (Mologic ltd), US (IBM's Watson Research Center) and the Netherlands (Pepscan Presto BV), changes this. The research shows how different proteins are made up, and therefore how they can be identified reliably.

The highly sought solution is 'intelligent selection' of antibody-specific interaction sites on hormones that can differ from similar sites of other hormones by just one molecule.

The research focused on hCG (human chorionic gonadotropin), a hormone produced during pregnancy. A subunit of hCG - hCGâ - is secreted by some cancers, meaning detection can give early warning of tumors.

hCG is very similar to other reproductive hormones, known as LH and FSH, which are always present in the body. Detecting hCG can be confused with these other hormones, leading to unreliable results.

The immunoassay antibodies bind to a tiny part of the hormone called an epitope. Hormones are made up of thousands of 'building blocks', with epitopes making up less than 10 of these blocks. The difference between hormones can be as little as one of these epitope blocks.

The research team took a variety of precise measurements of the hCG hormone, drawing on NPL's world-leading measurement technology and expertise, which were supported by atomistic computer simulations.

The team showed how very subtle, atomic level characteristics define the antibody selectivity in closely related epitopes of different proteins. They identified that specific antibodies are highly selective in immunoassays and can distinguish between hCGâ and closely related LH fragments.

Understanding these structural differences explains the observed selectivity in the full hormones. Armed with this knowledge, scientists can develop intelligent epitope selection to achieve the required assay performance. This means reliable tests can be developed to indentify the presence of different hormones – in this case the presence of hCGâ which indicates cancer, as opposed to LH, which is always present.

The advances described in this research will enable development of further immunoassays to identify other biomarkers from similar groups. Pharmaceutical companies could use this to develop new technologies for diagnostics and clinical disease treatments, for example tests for tumour as part of routine screenings.

Max Ryadnov, Principal Research Scientist at the National Physical Laboratory, says "This work answers one of the big questions in distinguishing biomarkers which are critical for identifying and treating serious diseases. We hope this breakthrough will underpin the development of a range of new diagnostic techniques and treatment."

Prof Paul Davis, Chief Scientific Officer of Mologic ltd – a UK diagnostic company that initiated the study, said: "It was a great collaborative effort, and it stands as a fine example of what can be achieved when motivated scientists work together openly across boundaries."

This research is a part of the NPL-led international research project 'Multiscale measurements in biophysical systems', which is jointly funded by NPL and the Scottish Universities Physics Alliance.

The full paper - Antibody Recognition of a human chorionic gonadotropin epitope (hCG{beta}66-80) depends on local structure retained in the free peptide - will be published by the Journal of Biological Chemistry – the world's premier and most cited forum for Biological Chemistry and Molecular Biology on 15th July 2011

J. Biol. Chem. 2011 286: 25016-25026

David Lewis | EurekAlert!
Further information:
http://www.npl.co.uk

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>