Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the APJ Receptor Binding Site

01.06.2010
Exploring the RPRL Motif of Apelin-13 through Molecular Simulation and Biological Evaluation of Cyclic Peptide Analogues

Apelin is a recently discovered peptide that binds to the apelin (or APJ) G-protein-coupled receptor. Apelin-13 (NH2-QRPRLSHKGPMPF-COOH), one of several cleavage products of the proprotein form of the apelin gene product, is a vasoactive peptide and is one of the most potent endogenous inotropic agents known so far.

After having conducted extensive replica-exchange molecular dynamics and competition binding experiments, N. J. Maximilian Macaluso and Robert C. Glen at the University of Cambridge report the design and evaluation of head-to-tail cyclized analogues of the apelin-13 peptide in the journal ChemMedChem.

"The receptor-bound conformation of apelin, if known, would greatly facilitate the rational design of novel agonists and antagonists at APJ," says Glen. "Interest in apelin as a drug target has greatly increased with recognition of its role in cardiovascular disease, metabolic syndrome, and as a co-receptor for HIV infection."

This combined in silico and in vivo approach revealed that peptides promoting a â turn at the RPRL motif toward the N terminus of apelin-13 show affinity for the APJ receptor, whereas those without this RPRL turn exhibit almost no binding at APJ. This is a critical step in understanding the APJ receptor binding site, which has not yet been identified. The study lays the foundation for not only further development of truncated cyclic peptide analogues of apelin-13, but also the development of non-peptide mimetics.

Author: Robert C. Glen, University of Cambridge (UK), http://www.ch.cam.ac.uk/staff/rcg.html

Title: Exploring the RPRL Motif of Apelin-13 through Molecular Simulation and Biological Evaluation of Cyclic Peptide Analogues

ChemMedChem 2010, 5, No. 8, Permalink to the article: http://dx.doi.org/10.1002/cmdc.201000061

Robert C. Glen | Wiley-VCH
Further information:
http://www.ch.cam.ac.uk/staff/rcg.html
http://www.chemmedchem.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>