Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding a bacterial immune system 1 step at a time

18.05.2011
Researchers at the University of Alberta have taken an important step in understanding an immune system of bacteria, a finding that could have implications for medical care and both the pharmaceutical and dairy industries.

In research published in the high impact journal Nature Structural & Molecular Biology, Andrew MacMillan and co-workers in his lab have described the first step of the immune response of bacterial cells. Scientists had previously found that a bacterial virus, called a bacteriophage, attacks a bacterial cell by injecting its DNA in to the cell. MacMillan's lab discovered the mechanism by which bacterial RNA is cut into pieces by a specific protein; these pieces then target the invading virus' DNA.

"We are starting at the beginning because we want to understand how this works and how we can use this to basically control bacterial growth," said Matt Schellenberg, a post-doctoral fellow in the MacMillan lab in the department of biochemistry in the Faculty of Medicine & Dentistry. This system could be beneficial for bacteria to fight off invasion of viruses. Alternatively, medical professionals could use knowledge of this system to help fight a human bacterial infection.

According to MacMillan they used a technique called X-ray crystallography to produce high-resolution pictures of a key step in the bacteria's immune response — the production of the targeting RNAs.

... more about:
»DNA »MacMillan »RNA »immune response »immune system

"Bacteria have evolved this system to protect themselves against infection," said MacMillan.

As they unfold the mystery of the bacteria cells immune system, which is named the CRISPR system, there are implications for a variety of industrial practices involving fermentation. Everything from cheese and yogurt production to the synthesis of complex pharmaceuticals relies on large scale bacterial fermentation which is at risk of bacteriophage infection with expensive consequences – losing the batch. The labs ongoing work could help these industries boost the immune systems of the "good" bacteria.

The next step for the lab is to uncover the mechanism by which virus' DNA is destroyed.

"We want to use what we've learned so far to examine the actual targeting mechanism," says Macmillan. "This is a complex pathway and there's a lot of exciting biology to still uncover."

Quinn Phillips | EurekAlert!
Further information:
http://www.ualberta.ca

Further reports about: DNA MacMillan RNA immune response immune system

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>