Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The undead may influence biodiversity, greenhouse gas emissions

27.01.2011
It’s commonly known, at least among microbiologists, that microbes have an additional option to living or dying — dormancy.

Dormant microbes are less like zombies and more like hibernating bears. What isn’t known, however, is how large numbers of dormant microorganisms affect the natural environments when they act as microbial seed banks.

In the current issue of Nature Reviews: Microbiology, Jay Lennon, Michigan State University assistant professor of microbiology and molecular genetics, examines the cellular mechanisms that allow microbes to hibernate and addresses the implications they can have on larger ecosystems such as soil, oceans, lakes and the human body.

“Only a tiny fraction is metabolically active at any given time,” said Lennon, who is affiliated with MSU’s Kellogg Biological Station and MSU’s AgBioResearch. “How would our environment be altered, in terms of carbon emissions, nutrient cycling and greenhouse gases such as nitrous oxide, by dramatic increases or decreases in the dormancy of microbes?”

Dormancy is a reversible state of low metabolic activity that organisms enter when they encounter hard times, such as freezing temperatures or starvation. Unlike plants that follow predictable growth cycles, microbes don’t have to follow a linear progression. They could be growing, experience distress and go back to sleep. Once conditions change, they could start growing again without having to go through a full cycle.

“However, it does take a certain level of commitment, a certain energy investment to make it happen,” Lennon said. “Just as people don’t run out and winterize their homes if it gets cool in August, microbes want to be sure that truly hard times have set in before shifting into a dormant phase.”

Consider that 90 percent of soil microorganisms are typically dormant and only half of bacterial species are active. Lennon and his co-author, Stuart Jones at the University of Notre Dame, theorize that dormancy and the presence of such large reservoirs of microbial “seed banks” have important implications for biodiversity and the stability and functioning of ecosystem services.

“The idea of a microbial seed bank is a rather novel concept, but from our research we found that dormancy and seed banks are prevalent in most ecosystems.” Lennon said. “What’s fascinating is that there’s only a small fraction that are active, which means there’s a large reservoir that could potentially be activated at any given time.”

Dormancy and the seed bank effect make microbes more resilient and could play key roles in microbial biodiversity as species migrate or simply remain mostly dormant over extended periods, he added. Dormancy could also help explain the sudden outbreak of diseases, he said, perhaps sparked by some change in the environment.

“One-third of world’s population carries dormant tuberculosis microbes,” he said. “Obviously, you can live a long time with the dormant cell in your body, but it’s important to understand what can trigger its reanimation or what maintains its dormancy.”

As Lennon continues his research, he is particularly interested in identifying the triggers of dormancy and activation cycles as well as how climate change affects these processes.

Lennon’s research is funded in part by the National Science Foundation.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: Lennon cellular mechanism greenhouse gas molecular genetic

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>