Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The undead may influence biodiversity, greenhouse gas emissions

27.01.2011
It’s commonly known, at least among microbiologists, that microbes have an additional option to living or dying — dormancy.

Dormant microbes are less like zombies and more like hibernating bears. What isn’t known, however, is how large numbers of dormant microorganisms affect the natural environments when they act as microbial seed banks.

In the current issue of Nature Reviews: Microbiology, Jay Lennon, Michigan State University assistant professor of microbiology and molecular genetics, examines the cellular mechanisms that allow microbes to hibernate and addresses the implications they can have on larger ecosystems such as soil, oceans, lakes and the human body.

“Only a tiny fraction is metabolically active at any given time,” said Lennon, who is affiliated with MSU’s Kellogg Biological Station and MSU’s AgBioResearch. “How would our environment be altered, in terms of carbon emissions, nutrient cycling and greenhouse gases such as nitrous oxide, by dramatic increases or decreases in the dormancy of microbes?”

Dormancy is a reversible state of low metabolic activity that organisms enter when they encounter hard times, such as freezing temperatures or starvation. Unlike plants that follow predictable growth cycles, microbes don’t have to follow a linear progression. They could be growing, experience distress and go back to sleep. Once conditions change, they could start growing again without having to go through a full cycle.

“However, it does take a certain level of commitment, a certain energy investment to make it happen,” Lennon said. “Just as people don’t run out and winterize their homes if it gets cool in August, microbes want to be sure that truly hard times have set in before shifting into a dormant phase.”

Consider that 90 percent of soil microorganisms are typically dormant and only half of bacterial species are active. Lennon and his co-author, Stuart Jones at the University of Notre Dame, theorize that dormancy and the presence of such large reservoirs of microbial “seed banks” have important implications for biodiversity and the stability and functioning of ecosystem services.

“The idea of a microbial seed bank is a rather novel concept, but from our research we found that dormancy and seed banks are prevalent in most ecosystems.” Lennon said. “What’s fascinating is that there’s only a small fraction that are active, which means there’s a large reservoir that could potentially be activated at any given time.”

Dormancy and the seed bank effect make microbes more resilient and could play key roles in microbial biodiversity as species migrate or simply remain mostly dormant over extended periods, he added. Dormancy could also help explain the sudden outbreak of diseases, he said, perhaps sparked by some change in the environment.

“One-third of world’s population carries dormant tuberculosis microbes,” he said. “Obviously, you can live a long time with the dormant cell in your body, but it’s important to understand what can trigger its reanimation or what maintains its dormancy.”

As Lennon continues his research, he is particularly interested in identifying the triggers of dormancy and activation cycles as well as how climate change affects these processes.

Lennon’s research is funded in part by the National Science Foundation.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: Lennon cellular mechanism greenhouse gas molecular genetic

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>