Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering the Forbidden Side of Molecules

22.09.2014

Researchers at the University of Basel have succeeded in observing the “forbidden” infrared spectrum of a charged molecule for the first time. These extremely weak spectra offer perspectives for extremely precise measurements of molecular properties and may also contribute to the development of molecular clocks and quantum technology. The results were published in the scientific journal Nature Physics.

Spectroscopy, the study of the interaction between matter and light, is probably the most important method for investigating the properties of molecules. Molecules can only absorb light at well-defined wavelengths which correspond to the difference between two quantum-mechanical energy states.


Simulation of spatial distribution of individual nitrogen ions (green) in the interior of a Coulomb crystal of laser-cooled calcium ions (blue).

Illustration: University of Basel, Department of Chemistry

This is referred to as a spectroscopic transition. An analysis of the wavelengths and the intensity of the transitions provides information about the chemical structure and molecular motions, such as vibration or rotation.

In certain cases, however, the transition between two energy levels is not permitted. The transition is then called “forbidden”. Nevertheless, this restriction is not categorical, meaning that forbidden transitions can still be observed with an extremely sensitive method of measurement. Although the corresponding spectra are extremely weak, they can be measured to an exceptionally accurate degree. They provide information on molecular properties with a level of precision not possible within allowed spectra.

Precise measurements of molecular properties

Within the framework of the National Centre of Competence in Research QSIT – Quantum Science and Technology, the research group headed by Professor Stefan Willitsch at the University of Basel's Department of Chemistry has established methods for the precise manipulation and control of molecules on the quantum level.

In the present study, individual charged nitrogen molecules (ions) were generated in a well-defined molecular energy state. The ions were then implanted into a structure of ultra-cold, laser-cooled calcium ions – a Coulomb crystal – in an ultra-high vacuum chamber. The molecular ions were thus cooled to a few thousandths of a degree above absolute zero to localize in space. In this isolated, cold environment, the molecules could be investigated without perturbations over long periods of time. This enabled the researchers to excite and observe forbidden transitions in the infrared spectral domain using an intensive laser.

Potential for new applications

The new method paves the way for new applications, such as the highly precise measurement of molecular properties, the development of extremely precise clocks based on individual molecules and quantum information processing using molecules. It also offers perspectives to test fundamental concepts using spectroscopic precision measurements on single molecules which were up to now the domain of high-energy physics. One example is the important question whether the physical constants of nature are actually really constant.

Original source
Matthias Germann, Xin Tong and Stefan Willitsch
Observation of electric-dipole-forbidden infrared transitions in cold molecular ions
Nature Physics, published online 21 September 2014 | doi: 10.1038/nphys3085

Further Information
Prof. Dr. Stefan Willitsch, University of Basel, Department of Chemistry, phone: +41 61 267 38 30, email: stefan.willitsch@unibas.ch

Weitere Informationen:

http://dx.doi.org/10.1038/nphys3085 - Abstract

Reto Caluori | Universität Basel

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>