Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering secrets of life in the ocean

20.11.2008
Researchers unravel how the very first eyes in evolution might have worked and how they guide the swimming of marine plankton towards light

The best-selling novel ‘The swarm’ captured the imagination of countless readers with the fascination of marine life. But it also showed how little we understand life in the depth of the ocean.

Scientists at the European Molecular Biology Laboratory (EMBL) and the Max Planck Institute (MPI) for Developmental Biology now explain the remarkable ability of marine zooplankton to swim towards light. Their study, published in the current issue of Nature, reveals how simple eyes of only two cells, sense the direction of light and guide movement towards it.

The key is a nerve that connects the eyes directly to the cells that mediate swimming. The research also provides new insights into what the first eyes in animal evolution might have looked like and what their function was.

Larvae of marine invertebrates – worms, sponges, jellyfish - have the simplest eyes that exist. They consist of no more than two cells: a photoreceptor cell and a pigment cell. These minimal eyes, called eyespots, resemble the ‘proto-eyes’ suggested by Charles Darwin as the first eyes to appear in animal evolution. They cannot form images but allow the animal to sense the direction of light. This ability is crucial for phototaxis – the swimming towards light exhibited by many zooplankton larvae. Myriads of planktonic animals travel guided by light every day. Their movements drive the biggest transport of biomass on earth.
“For a long time nobody knew how the animals do phototaxis with their simple eyes and nervous system,” explains Detlev Arendt, whose team carried out the research at EMBL. “We assume that the first eyes in the animal kingdom evolved for exactly this purpose. Understanding phototaxis thus unravels the first steps of eye evolution.”

Studying the larvae of the marine ragworm Platynereis dumerilii, the scientists found that a nerve connects the photoreceptor cell of the eyespot and the cells that bring about the swimming motion of the larvae. The photoreceptor detects light and converts it into an electrical signal that travels down its neural projection, which makes a connection with a band of cells endowed with cilia. These cilia - thin, hair-like projections - beat to displace water and bring about movement.

Shining light selectively on one eyespot changes the beating of the adjacent cilia. The resulting local changes in water flow are sufficient to alter the direction of swimming, computer simulations of larval swimming show.
The second eyespot cell, the pigment cell, confers the directional sensitivity to light. It absorbs light and casts a shadow over the photoreceptor. The shape of this shadow varies according to the position of the light source and is communicated to the cilia through the signal of the photoreceptor.

“Platynereis can be considered a living fossil,” says Gáspár Jékely, former member of Arendt’s lab who now heads a group at the MPI for Developmental Biology, “it still lives in the same environment as its ancestors millions of years ago and has preserved many ancestral features. Studying the eyespots of its larva is probably the closest we can get to figuring out what eyes looked like when they first evolved.”

It is likely that the close coupling of light sensor to cilia marks an important, early landmark in the evolution of animal eyes. Many contemporary marine invertebrates still employ the strategy for phototaxis.

Published in Nature on 20 November 2008.

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org
http://www.embl.org/aboutus/news/press/2008/20nov08/index.html

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>