Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering elements of risk

04.10.2010
A newly identified set of genomic loci appears to be selectively associated with prostate cancer in East Asian men

Prostate cancer represents a serious threat to men all over the world, especially those over the age of 65, and is the second leading cause of cancer death among males in both the United States and United Kingdom.

Until recently, the risk level for men living in East Asia was lower than virtually any other region of the world. This is now changing, however, as a result of both lifestyle and demographic factors. “This increased risk is probably due to the shift to a westernized lifestyle, including food, and the rapid increase in the aging population,” explains Hidewaki Nakagawa of the RIKEN Center for Genomic Medicine in Yokohama. Indeed, estimates from the United Nations suggest that the percentage of the population of East Asia that are over the age of 65 will more than double between 2009 and 2050, and Japan in particular is projected to have by far the greatest proportion of elderly citizens.

In addition to these environmental factors, researchers have identified dozens of genetic changes that appear to represent potential risk factors for prostate cancer. All of these were identified based on screens performed on individuals of European ancestry, but a new genomic screen performed by Nakagawa and collaborators from throughout Japan has now identified several novel genetic variants that may prove valuable in diagnosing and treating the growing pool of at-risk Asian men.

Taking it to the bank

Nakagawa’s team has routinely partnered with scientists from BioBank Japan, an initiative launched in 2003 at the University of Tokyo in order to help scientists identify the bases for diverse medical conditions. “This project was started with the goal of collecting samples from a total of 300,000 individuals who have had at least one of 47 diseases, from a collaborative network of 66 hospitals located throughout Japan,” he explains. For this particular study, the researchers obtained DNA from1,583 prostate cancer patients and 3,386 cancer-free control subjects.

Nakagawa and his colleagues used these samples to perform what is known as a genome-wide association study (GWAS). Any given human genome is littered with large numbers of individual nucleotide variations, also known as single-nucleotide polymorphisms (SNPs), which reside both within and in-between genes. From a GWAS, researchers aim to identify SNPs that are significantly more likely to appear in affected individuals than in controls; a SNP with very strong disease association might either represent an actual sequence variation in a relevant gene or provide a useful physical marker for identifying neighboring candidate genes within the same chromosomal region.

The team’s initial analysis of more than half a million different SNPs revealed 37 significantly associated variants at eight different genomic loci, two of which had not been previously linked with prostate cancer. A subsequent replication study, performed with an independent set of 3,001 affected and 5,415 control subjects, enabled the investigators to identify three additional loci, for a total of five novel SNPs. Interestingly, although many of the cancer-associated SNPs that had been previously identified in European populations also exhibited significant linkage among Japanese subjects, more than one-third (12 out of 31) did not. On the other hand, several recent large-scale genomic studies conducted using similar analytical methods but focused primarily on subjects of Northern European ancestry failed to find a significant association for any of the five SNPs identified by Nakagawa and colleagues.

Getting to know the candidates

Beyond the strong evidence supporting their apparent association with disease risk, the majority of these novel SNPs proved to be highly enigmatic. Two of them, rs12653946 and rs9600079, reside within stretches of DNA ranging in length from 20–40,000 bases that contain no known genes. Another two were situated within non-protein-coding regions of a pair of genes; rs13385191 is found in C2orf43, which produces a protein of unknown function, while rs1983891 is located within the gene encoding the so-called ‘forkhead box P4’ (FOXP4) transcription factor. Although it belongs to a family of proteins that have been associated with cell cycle regulation and tumorigenesis, the function of FOXP4 has not yet been characterized.

The final SNP appears to be the most intriguing candidate, as it occurs within a stretch of DNA containing the gene for G protein-coupled receptor C6A (GPRC6A), a protein normally expressed by testosterone-producing Leydig cells. “The GPRC6A gene is likely to be associated with sex hormone production, as shown [by experiments] in knockout mice,” says Nakagawa, “and male hormone levels are one of the most important factors in prostate carcinogenesis.” However, further analysis will be needed to confirm that this is indeed the gene being flagged by rs339331.

Although much work remains to be done in characterizing how the genomic regions identified here contribute to prostate cancer risk, they nevertheless represent important additions to an already large pool of SNPs with potential diagnostic or prognostic value. “This is a much bigger number than exists for other cancers,” says Nakagawa.

Nakagawa also points out that these five SNPs appear to represent loci that could possibly be used for the selective characterization of prostate cancer predisposition within specific ethnic groups, and that these may represent the first set of Asian-specific cancer risk biomarkers. “We are now dedicated to trying to establish a risk estimation system for prostate cancer among Japanese and other Asians by combining many SNPs and other risk factors of prostate cancer,” he says.

About the Researcher

Hidewaki Nakagawa

Hidewaki Nakagawa was born in Osaka, Japan, in 1966. After graduating from the Osaka University School of Medicine in 1991, he embarked on a career in clinical oncology, specifically gastrointestinal and breast cancer, and critical care medicine as a surgeon. He obtained his PhD in 2000 from Osaka University for research on hereditary colorectal cancer. He spent three-and-a-half years as a postdoctoral researcher in cancer genetics with the Human Cancer Genetic Program at Ohio State University, USA, then returned to Japan where he joined the University of Tokyo as an assistant professor in the Institute of Medical Science studying molecular therapeutic targets for prostate and pancreatic cancer. In 2008, he joined the RIKEN Center for Genomic Medicine as team leader of the Laboratory for Biomarker Development. His current research focuses on biomarker development for prostate and gastrointestinal cancer, and cancer genomics based on whole genome sequencing. He is also a participant in the International Cancer Genome Consortium project.

Journal information
1. United Nations. World Population Ageing 2009. Economic and Social Affairs, Population Division, ESA/P/WP/212 December 2009, New York.

2. Takata, R., Akamatsu, S., Kubo, M., Takahashi, A., Hosono, N., Kawaguchi, T., Tsunoda, T., Inazawa, J., Kamatani, N., Ogawa, O., et al. Genome-wide association study identifies five new susceptivility loci for prostate cancer in the Japanese population. Nature Genetics 42, 751–754 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/hom/6406
http://www.researchsea.com

Further reports about: Asian DNA FOXP4 GPRC6A GWAS Japanese Medicine Population RIKEN SNP genetic variant genomic prostate cancer risk factor

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>