Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unconventional quasiparticles predicted in conventional crystals


An international team of researchers has predicted the existence of several previously unknown types of quantum particles in materials. The particles — which belong to the class of particles known as fermions — can be distinguished by several intrinsic properties, such as their responses to applied magnetic and electric fields. In several cases, fermions in the interior of the material show their presence on the surface via the appearance of electron states called Fermi arcs, which link the different types of fermion states in the material's bulk.

The research, published online this week in the journal Science, was conducted by a team at Princeton University in collaboration with researchers at the Donostia International Physics Center (DIPC) in Spain and the Max Planck Institute for Chemical Physics of Solids in Germany. The investigators propose that many of the materials hosting the new types of fermions are "protected metals," which are metals that do not allow, in most circumstances, an insulating state to develop. This research represents the newest avenue in the physics of "topological materials," an area of science that has already fundamentally changed the way researchers see and interpret the states of matter.

Two electronic states known as Fermi arcs, localized on the surface of a material, stem out of the projection of a 3-fold degenerate bulk new fermion.


The team at Princeton included Barry Bradlyn and Jennifer Cano, both associate research scholars at the Princeton Center for Theoretical Science; Zhijun Wang, a postdoctoral research associate in the Department of Physics, Robert Cava, the Russell Wellman Moore Professor of Chemistry; and B. Andrei Bernevig, associate professor of physics. The research team also included Maia Vergniory, a postdoctoral research fellow at DIPC, and Claudia Felser, a professor of physics and chemistry and director of the Max Planck Institute for Chemical Physics of Solids.

For the past century, gapless fermions, which are quantum particles with no energy gap between their highest filled and lowest unfilled states, were thought to come in three varieties: Dirac, Majorana and Weyl. Condensed matter physics, which pioneers the study of quantum phases of matter, has become fertile ground for the discovery of these fermions in different materials through experiments conducted in crystals. These experiments enable researchers to explore exotic particles using relatively inexpensive laboratory equipment rather than large particle accelerators.

In the past four years, all three varieties of fermions have been theoretically predicted and experimentally observed in different types of crystalline materials grown in laboratories around the world. The Weyl fermion was thought to be last of the group of predicted quasiparticles in nature. Research published earlier this year in the journal Nature (Wang et al., doi:10.1038/nature17410) has shown, however, that this is not the case, with the discovery of a bulk insulator which hosts an exotic surface fermion.

In the current paper, the team predicted and classified the possible exotic fermions that can appear in the bulk of materials. The energy of these fermions can be characterized as a function of their momentum into so-called energy bands, or branches. Unlike the Weyl and Dirac fermions, which, roughly speaking, exhibit an energy spectrum with 2- and 4-fold branches of allowed energy states, the new fermions can exhibit 3-, 6- and 8-fold branches. The 3-, 6-, or 8-fold branches meet up at points – called degeneracy points - in the Brillouin zone, which is the parameter space where the fermion momentum takes its values.

"Symmetries are essential to keep the fermions well-defined, as well as to uncover their physical properties," Bradlyn said. "Locally – by inspecting the physics close to the degeneracy points, one can think of them as new particles, but this is only part of the story," he said.

Cano added, "The new fermions know about the global topology of the material. Crucially, they connect to other points in the Brillouin zone in nontrivial ways."

During the search for materials exhibiting the new fermions, the team uncovered a fundamentally new and systematic way of finding metals in nature. Until now, searching for metals involved performing detailed calculations of the electronic states of matter.

"The presence of the new fermions allows for a much easier way to determine whether a given system is a protected metal or not, in some cases without the need to do a detailed calculation," Wang said.

Vergniory added, "One can just count the number of electrons of a crystal, and figure out, based on symmetry, if a new fermion exists within observable range."

The researchers suggest that this is because the new fermions require multiple electronic states to meet in energy: The 8- branch fermion requires the presence of 8 electronic states. As such, a system with only 4 electrons can only occupy half of those states and cannot be insulating, thereby creating a protected metal.

"The interplay between symmetry, topology and material science hinted by the presence of the new fermions is likely to play a more fundamental role in our future understanding of topological materials – both semimetals and insulators," Cava said.

Felser added, "We all envision a future for quantum physical chemistry where one can write down the formula of a material, look at both the symmetries of the crystal lattice and at the valence orbitals of each element, and, without a calculation, be able to tell whether the material is a topological insulator or a protected metal."

The research was supported by the U.S. Army Research Office Multidisciplinary University Research Initiative (grant W911-NF-12-1-0461), the U.S. Office of Naval Research (ONR-N00014-11-1-0635), the National Science Foundation (NSF CAREER DMR-0952428, NSF-MRSEC DMR-1005438), the David and Lucile Packard Foundation, and the W. M. Keck Foundation. Additional support was provided by the Fellow Gipuzkoa Program through FEDER Una Manera de hacer Europa and the FIS2013-48286-C2-1-P national project of the Spanish MINECO.

The paper, "Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals," by Barry Bradlyn, Jennifer Cano, Zhijun Wang, Maia Vergniory, Claudia Felser, Robert Cava, and B. Andrei Bernevig, will be published online by the journal Science on Thursday, July 21, 2016.

The research at the Max Planck Institute for Chemical Physics of Solids (MPI CPfS) in Dresden aims to discover and understand new materials with unusual properties.
In close cooperation, chemists and physicists (including chemists working on synthesis, experimentalists and theoreticians) use the most modern tools and methods to examine how the chemical composition and arrangement of atoms, as well as external forces, affect the magnetic, electronic and chemical properties of the compounds.
New quantum materials, physical phenomena and materials for energy conversion are the result of this interdisciplinary collaboration.
The MPI CPfS ( is part of the Max Planck Society and was founded in 1995 in Dresden. It consists of around 280 employees, of which about 180 are scientists, including 70 doctoral students.

Weitere Informationen:

Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe
Further information:

Further reports about: Chemical Physics Max-Planck-Institut crystals fermions physics

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>