Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC team finds new target for treatment of advanced prostate cancer

07.07.2010
In its early stages, prostate cancer requires androgens (hormones that promote the development and maintenance of male sex characteristics) for growth, and current first-line therapies target the receptor for these hormones to slow cancer's development and spread.

However, advanced prostate cancers are often androgen-independent, meaning that androgen-blocking therapies are ineffective.

Scientists aren't sure how this shift occurs as prostate cancer advances. One idea is that prostate cancer cells acquire the ability to make their own androgen. Another says that the androgen receptor that is known to stimulate tumor growth can still be active even when the hormone is not present. Most likely, both are important.

A recent study by UNC researchers, published in the Journal of Biological Chemistry, provides evidence for the second theory, demonstrating that expression of one of a group of genes found only in humans and non-human primates can promote androgen receptor activity in concert with other proteins called coregulators.

One of a group of MAGE genes, so named because they were originally identified in melanoma, called MAGE-11 interacts with another protein, called p300, to provide the cancer cells with a way to enhance androgen receptor signaling and promote tumor growth, even when patients are undergoing androgen deprivation therapy.

According to team leader Elizabeth M. Wilson, PhD, professor of pediatrics and biochemistry and biophysics at UNC-Chapel Hill, "We found that a small portion of the androgen receptor interacts with the MAGE-11 molecule which serves as a bridge to p300, a strong histone modifying enzyme that increases androgen receptor activity. This is exciting because it shows how the cancer cells have developed a way to boost androgen receptor activity, even in the absence or at low levels of the hormone that binds the androgen receptor."

Wilson, who is also a UNC Lineberger member, goes on to explain that understanding this mechanism opens the door to additional targets for new therapies and broader clinical applications of new drugs.

"The MAGE-11 molecule is a promising target for shutting down androgen receptor activity that promotes the growth of cancer cells," she adds.

Other team members include Emily Askew, a recent PhD graduate of the Toxicology Curriculum at UNC, Suxia Bai, PhD, a former post-doctoral fellow in the Wilson laboratory, and Amanda Blackwelder, a research specialist.

The research was supported by grants from the U.S. Department of Defense, the National Institutes of Health and the U.S. Public Health Service.

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>