UNC team finds new target for treatment of advanced prostate cancer

However, advanced prostate cancers are often androgen-independent, meaning that androgen-blocking therapies are ineffective.

Scientists aren't sure how this shift occurs as prostate cancer advances. One idea is that prostate cancer cells acquire the ability to make their own androgen. Another says that the androgen receptor that is known to stimulate tumor growth can still be active even when the hormone is not present. Most likely, both are important.

A recent study by UNC researchers, published in the Journal of Biological Chemistry, provides evidence for the second theory, demonstrating that expression of one of a group of genes found only in humans and non-human primates can promote androgen receptor activity in concert with other proteins called coregulators.

One of a group of MAGE genes, so named because they were originally identified in melanoma, called MAGE-11 interacts with another protein, called p300, to provide the cancer cells with a way to enhance androgen receptor signaling and promote tumor growth, even when patients are undergoing androgen deprivation therapy.

According to team leader Elizabeth M. Wilson, PhD, professor of pediatrics and biochemistry and biophysics at UNC-Chapel Hill, “We found that a small portion of the androgen receptor interacts with the MAGE-11 molecule which serves as a bridge to p300, a strong histone modifying enzyme that increases androgen receptor activity. This is exciting because it shows how the cancer cells have developed a way to boost androgen receptor activity, even in the absence or at low levels of the hormone that binds the androgen receptor.”

Wilson, who is also a UNC Lineberger member, goes on to explain that understanding this mechanism opens the door to additional targets for new therapies and broader clinical applications of new drugs.

“The MAGE-11 molecule is a promising target for shutting down androgen receptor activity that promotes the growth of cancer cells,” she adds.

Other team members include Emily Askew, a recent PhD graduate of the Toxicology Curriculum at UNC, Suxia Bai, PhD, a former post-doctoral fellow in the Wilson laboratory, and Amanda Blackwelder, a research specialist.

The research was supported by grants from the U.S. Department of Defense, the National Institutes of Health and the U.S. Public Health Service.

Media Contact

Ellen de Graffenreid EurekAlert!

More Information:

http://www.unc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors