Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UNC scientists unveil a superbug’s secret to antibiotic resistance

Worldwide, many strains of the bacterium Staphyloccocus aureus are already resistant to all antibiotics except vancomycin. But as bacteria are becoming resistant to this once powerful antidote, S. aureus has moved one step closer to becoming an unstoppable killer.

Now, researchers at the University of North Carolina at Chapel Hill have not only identified the mechanism by which vancomycin resistance spreads from one bacterium to the next, but also have suggested ways to potentially stop the transfer.

The work, led by Matthew Redinbo, professor of chemistry at UNC’s College of Arts and Sciences, addresses the looming threat of incurable staph infections – a global public health problem that has mobilized scientists across disciplines to work together to identify the Achilles heel of these antibiotic-resistant bacteria.

“We used to live in a world where antibiotics could readily cure bacterial disease,” said Redinbo. “But this is clearly no longer the case. We need to understand how bacteria obtain resistance to drugs like vancomycin, which served for decades as the ‘antibiotic of last resort.’”

In his work, Redinbo and his team targeted a bacterial enzyme known as Nicking Enzyme in Staphyloccoccus, or NES. The enzyme has long been known to interact with plasmids, circular pieces of double-stranded DNA within bacteria that are physically separate from the bacterial chromosome. Plasmids commonly contain antibiotic-resistance genes, and can make the machinery necessary to transfer these genes from an infected bacterium to an uninfected one.

By revealing the crystal structure of NES, the researchers found that this enzyme nicks one strand of the plasmid at a very specific site—and in a very specific way. It turns out that NES forms two loops that work together to pinch one strand of the plasmid at a particular groove in the DNA to cut it. This strand is now free to leave its host and transfer to a nearby bacterium, making them resistant to vancomycin.

Moreover, Redinbo was able to capture a snapshot of the enzyme bound to the plasmid. “As a structural biologist, it’s all about the pictures for me,” said Redinbo. “And it was this picture that confirmed the precise location on which NES works.”

With this information, Redinbo knew the groove on the DNA that the enzyme recognize and could design a small synthetic molecule that would sit on this groove and block NES. Teaming up with colleagues at the California Institute of Technology, Redinbo did just that. The molecule prevented NES from nicking the DNA, which could prevent the resistance genes from spreading.

According to Redinbo and colleagues, this small synthetic molecule could help guide future research aimed at developing effective therapies for strains of antibiotic-resistant S. aureus.

“This is really exciting for us,” said Redinbo, who is also a professor at UNC’s School of Medicine and a member of the Lineberger Comprehensive Cancer Center. “It opens the door for potentially stopping the spread of antibiotic resistance—and that’s exactly what we need in this post-antibiotic era.”

The work was published this week in the online early edition of the Proceedings of the National Academy of Sciences.

Media note: Matthew Redinbo can be contacted at (919) 962-4504,

College of Arts and Sciences contact: Dee Reid, (919) 843-6339,

News Services contact: Thania Benios, (919) 962-8596,

Thania Benios | EurekAlert!
Further information:

Further reports about: Arts Arts and Sciences DNA NES UNC resistance genes synthetic molecule

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>