Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists teach enzyme to make synthetic heparin in more varieties

28.11.2008
Scientists at the University of North Carolina at Chapel Hill have learned to customize a key human enzyme responsible for producing heparin, opening the door to a more effective synthetic anticoagulant as well as treatments for other conditions.

Jian Liu, Ph.D., and colleagues at the UNC Eshelman School of Pharmacy have learned to modify the enzyme heparan sulfate 2-O-sulfotransferase, which produces heparin in the human body in addition to other heparin-like molecules. By modifying 2-O-sulfotransferase, researchers will be able to create customized forms of synthetic heparin with different properties.

“Previously it was nearly impossible to change the nature of the heparin generated by the enzyme,” said Liu, associate professor in the school’s medicinal chemistry and natural products division. “The degree of difficulty was 10-plus. Now it’s more like a two or three, which opens the door to the possibility of improving on the natural product.”

Heparin is produced naturally by many creatures, including humans. As a drug, it is a common anticoagulant derived mainly from the intestinal lining of pigs. The manufactured form of the substance is most often used during and after procedures such as kidney dialysis, heart bypass surgery, stent implantation, indwelling catheters, and knee and hip replacements to prevent clots from blocking or restricting the flow of blood. The annual worldwide sales of heparin are estimated at $3 billion.

The drug was in the spotlight earlier this year when more than 80 people died and hundreds of others suffered adverse reactions to it, leading to recalls of the drug in countries around the world. Authorities linked the problems to a contaminant in raw natural heparin made from pigs in China. A synthetic version of the drug that can be produced in controlled conditions is key to preventing a recurrence of that tragedy, Liu said.

“The pig stuff has served us well for 50 years and is very inexpensive, but if we cannot control the supply chain, we cannot ensure the safety of the drug,” Liu said. “I am working for the day when synthetic heparin can be brewed in large laboratories at a low cost.”

There is also interest in heparin as a treatment for small-cell lung cancer, Liu said. Being able to produce customized versions of the heparin molecule using 2-O-sulfotransferase would allow researchers to emphasize the drug’s potential anti-cancer properties. Heparin-like structures have also shown potential as treatments for arthritis, asthma and transplant rejection, among other conditions.

An article describing these findings, “Redirecting the substrate specificity of heparan sulfate 2-O-sulfotransferase by structurally guided mutagenesis,” was recently published online in the journal Proceedings of the National Academy of Sciences. The study was supported by grants from the American Heart Association, the National Institutes of Health and the Intramural Research Program of the National Institute of Environmental Heath Sciences.

Liu is senior author of the study along with Lars Pedersen, Ph.D., an adjunct associate professor at the school and a staff scientist at the National Institute of Environmental Health Sciences. Other authors are Heather Bethea, Ph.D. candidate, and Ding Xu, Ph.D., a Ph.D student at UNC at the time of the study who is now a postdoctoral fellow at the University of California, San Diego.

Working with researchers from Rensselaer Polytechnic Institute, Liu developed a process to create commercially viable quantities of synthetic heparin in 2006. In 2007 he developed Recomparin, a variety of synthetic heparin with a simplified chemical structure that makes it easier to produce and perhaps less likely to cause side effects.

Patric Lane | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>