Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists identify cellular communicators for cancer virus

09.11.2010
A new discovery by UNC scientists describes how cells infected by the Epstein-Barr virus (EBV) produce small vesicles or sacs called exosomes, changing their cellular "cargo" of proteins and RNA. This altered exosome enters cells and can change the growth of recipient cells from benign to cancer-producing.

In this way, virus-infected cells can have wide-ranging effects and potentially manipulate other cells throughout the body. The findings are reported in the November 8, 2010 early online edition of the Proceedings of the National Academy of Sciences.

Nancy Raab-Traub, PhD, professor of microbiology and Immunology, said, "Exosomes may be the Trojan Horse through which EBV gains control of cells that are not even infected. Importantly, the production of exosomes may provide a new therapeutic target that can be blocked to reduce cancer growth." Raab-Traub is a Sarah Graham Kenan Professor and member of UNC Lineberger Comprehensive Cancer Center.

Epstein-Barr Virus (EBV) is perhaps the world's most successful virus as almost everyone is infected with it for life. EBV cannot be eliminated by the immune system and is constantly secreted into saliva where it is effectively transmitted. Infection with the virus rarely causes disease; however, EBV is found in several major cancers, including lymphoma and cancer of the nose and throat, where its proteins hijack the cell's growth regulatory mechanisms to induce uncontrolled cell growth characteristic of cancer.

Through exosomes, a protein called latent membrane protein 1, that is considered the EBV oncogene, can be delivered to uninfected cells. Significantly, EBV also changes the entire contents of the exosomes to deliver cellular proteins that are also activated in cancers. This surprising finding reveals that one infected cell can have wide-ranging effects and induce the unchecked growth of neighboring cells.

The immune system is constantly on guard to identify foreign viral proteins. Through exosomal uptake, cancer cells would be stimulated to grow without the expression of proteins that "announce" infection to the immune system, thus allowing unchecked growth. The study also showed that the cells that produce blood vessels, the process called angiogenesis, readily take in the altered exosomes and are potentially induced to grow.

"The next step," explains David Meckes, PhD, postdoctoral fellow in the Raab-Traub lab and first author of the paper, "is to determine how the virus controls which proteins are sorted into exosomes and how this process could be inhibited."

Other UNC Lineberger authors, all members of the Raab-Traub laboratory, are: Kathy Shair, PhD;Aron Marquitz, PhD; Patrick Kung, PhD ; and Rachel Edwards, BS. The research was supported by a grant from the National Cancer Institute.

Dianne Shaw | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: EBV UNC blood vessel cellular protein immune system infected cells viral protein

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>