Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists identify cellular communicators for cancer virus

09.11.2010
A new discovery by UNC scientists describes how cells infected by the Epstein-Barr virus (EBV) produce small vesicles or sacs called exosomes, changing their cellular "cargo" of proteins and RNA. This altered exosome enters cells and can change the growth of recipient cells from benign to cancer-producing.

In this way, virus-infected cells can have wide-ranging effects and potentially manipulate other cells throughout the body. The findings are reported in the November 8, 2010 early online edition of the Proceedings of the National Academy of Sciences.

Nancy Raab-Traub, PhD, professor of microbiology and Immunology, said, "Exosomes may be the Trojan Horse through which EBV gains control of cells that are not even infected. Importantly, the production of exosomes may provide a new therapeutic target that can be blocked to reduce cancer growth." Raab-Traub is a Sarah Graham Kenan Professor and member of UNC Lineberger Comprehensive Cancer Center.

Epstein-Barr Virus (EBV) is perhaps the world's most successful virus as almost everyone is infected with it for life. EBV cannot be eliminated by the immune system and is constantly secreted into saliva where it is effectively transmitted. Infection with the virus rarely causes disease; however, EBV is found in several major cancers, including lymphoma and cancer of the nose and throat, where its proteins hijack the cell's growth regulatory mechanisms to induce uncontrolled cell growth characteristic of cancer.

Through exosomes, a protein called latent membrane protein 1, that is considered the EBV oncogene, can be delivered to uninfected cells. Significantly, EBV also changes the entire contents of the exosomes to deliver cellular proteins that are also activated in cancers. This surprising finding reveals that one infected cell can have wide-ranging effects and induce the unchecked growth of neighboring cells.

The immune system is constantly on guard to identify foreign viral proteins. Through exosomal uptake, cancer cells would be stimulated to grow without the expression of proteins that "announce" infection to the immune system, thus allowing unchecked growth. The study also showed that the cells that produce blood vessels, the process called angiogenesis, readily take in the altered exosomes and are potentially induced to grow.

"The next step," explains David Meckes, PhD, postdoctoral fellow in the Raab-Traub lab and first author of the paper, "is to determine how the virus controls which proteins are sorted into exosomes and how this process could be inhibited."

Other UNC Lineberger authors, all members of the Raab-Traub laboratory, are: Kathy Shair, PhD;Aron Marquitz, PhD; Patrick Kung, PhD ; and Rachel Edwards, BS. The research was supported by a grant from the National Cancer Institute.

Dianne Shaw | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: EBV UNC blood vessel cellular protein immune system infected cells viral protein

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>