Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC researchers find final pieces to the circadian clock puzzle

15.09.2014

Sixteen years after scientists found the genes that control the circadian clock in all cells, the lab of UNC's Aziz Sancar, M.D., Ph.D., discovered the mechanisms responsible for keeping the clock in synch

Researchers at the UNC School of Medicine have discovered how two genes – Period and Cryptochrome – keep the circadian clocks in all human cells in time and in proper rhythm with the 24-hour day, as well as the seasons.


This is Aziz Sancar, M.D., Ph.D., University of North Carolina Health Care.

Credit: UNC School of Medicine

The finding, published today in the journal Genes and Development, has implications for the development of drugs for various diseases such as cancers and diabetes, as well as conditions such as metabolic syndrome, insomnia, seasonal affective disorder, obesity, and even jetlag.

"Discovering how these circadian clock genes interact has been a long-time coming," said Aziz Sancar, MD, PhD, Sarah Graham Kenan Professor of Biochemistry and Biophysics and senior author of the Genes and Development paper. "We've known for a while that four proteins were involved in generating daily rhythmicity but not exactly what they did. Now we know how the clock is reset in all cells. So we have a better idea of what to expect if we target these proteins with therapeutics."

... more about:
»BMAL1 »Cryptochrome »UNC »circadian »clock »drugs »genes »proteins

In all human cells, there are four genes – Cryptochrome, Period, CLOCK, and BMAL1 – that work in unison to control the cyclical changes in human physiology, such as blood pressure, body temperature, and rest-sleep cycles. The way in which these genes control physiology helps prepare us for the day.

This is called the circadian clock. It keeps us in proper physiological rhythm. When we try to fast-forward or rewind the natural 24-hour day, such as when we fly seven time zones away, our circadian clocks don't let us off easy; the genes and proteins need time to adjust. Jetlag is the feeling of our cells "realigning" to their new environment and the new starting point of a solar day.

Previously, scientists found that CLOCK and BMAL1 work in tandem to kick start the circadian clock. These genes bind to many other genes and turn them on to express proteins. This allows cells, such as brain cells, to behave the way we need them to at the start of a day.

Specifically, CLOCK and BMAL1 bind to a pair of genes called Period and Cryptochrome and turn them on to express proteins, which – after several modifications – wind up suppressing CLOCK and BMAL1 activity. Then, the Period and Cryptochrome proteins are degraded, allowing for the circadian clock to begin again.

"It's a feedback loop," said Sancar, who discovered Cryptochrome in 1998. "The inhibition takes 24 hours. This is why we can see gene activity go up and then down throughout the day."

But scientists didn't know exactly how that gene suppression and protein degradation happened at the back end. In fact, during experiments using one compound to stifle Cryptochrome and another drug to hinder Period, other researchers found inconsistent effects on the circadian clock, suggesting that Cryptochrome and Period did not have the same role. Sancar, a member of the UNC Lineberger Comprehensive Cancer Center who studies DNA repair in addition to the circadian clock, thought the two genes might have complementary roles. His team conducted experiments to find out.

Chris Selby, PhD, a research instructor in Sancar's lab, used two different kinds of genetics techniques to create the first-ever cell line that lacked both Cryptochrome and Period. (Each cell has two versions of each gene. Selby knocked out all four copies.)

Then Rui Ye, PhD, a postdoctoral fellow in Sancar's lab and first author of the Genes and Development paper, put Period back into the new mutant cells. But Period by itself did not inhibit CLOCK-BMAL1; it actually had no active function inside the cells.

Next, Ye put Cryptochrome alone back into the cell line. He found that Cryptochrome not only suppressed CLOCK and BMAL1, but it squashed them indefinitely.

"The Cryptochrome just sat there," Sancar said. "It wasn't degraded. The circadian clock couldn't restart."

For the final experiment, Sancar's team added Period to the cells with Cryptochrome. As Period's protein accumulated inside cells, the scientists could see that it began to remove the Cryptochrome, as well as CLOCK and BMAL1. This led to the eventual degradation of Cryptochrome, and then the CLOCK-BMAL1 genes were free to restart the circadian clock anew to complete the 24-hour cycle.

"What we've done is show how the entire clock really works," Sancar said. "Now, when we screen for drugs that target these proteins, we know to expect different outcomes and why we get those outcomes. Whether it's for treatment of jetlag or seasonal affective disorder or for controlling and optimizing cancer treatments, we had to know exactly how this clock worked."

Previous to this research, in 2010, Sancar's lab found that the level of an enzyme called XPA increased and decreased in synchrony with the circadian clock's natural oscillations throughout the day. Sancar's team proposed that chemotherapy would be most effective when XPA is at its lowest level. For humans, that's late in the afternoon.

"This means that DNA repair is controlled by the circadian clock," Sancar said. "It also means that the circadian clocks in cancer cells could become targets for cancer drugs in order to make other therapeutics more effective."

###

This research was funded by the National Institutes of Health and the Science Research Council and Academia Sinica in Taiwan.

Other authors of the Genes and Development paper are UNC postdoctoral fellows Yi-Ying Chiou, PhD, and Shobban Gaddameedhi, PhD, and UNC graduate student Irem Ozkan-Dagliyan.

Mark Derewicz | Eurek Alert!
Further information:
http://www.med.unc.edu/

Further reports about: BMAL1 Cryptochrome UNC circadian clock drugs genes proteins

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>