Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UNC researchers find final pieces to the circadian clock puzzle


Sixteen years after scientists found the genes that control the circadian clock in all cells, the lab of UNC's Aziz Sancar, M.D., Ph.D., discovered the mechanisms responsible for keeping the clock in synch

Researchers at the UNC School of Medicine have discovered how two genes – Period and Cryptochrome – keep the circadian clocks in all human cells in time and in proper rhythm with the 24-hour day, as well as the seasons.

This is Aziz Sancar, M.D., Ph.D., University of North Carolina Health Care.

Credit: UNC School of Medicine

The finding, published today in the journal Genes and Development, has implications for the development of drugs for various diseases such as cancers and diabetes, as well as conditions such as metabolic syndrome, insomnia, seasonal affective disorder, obesity, and even jetlag.

"Discovering how these circadian clock genes interact has been a long-time coming," said Aziz Sancar, MD, PhD, Sarah Graham Kenan Professor of Biochemistry and Biophysics and senior author of the Genes and Development paper. "We've known for a while that four proteins were involved in generating daily rhythmicity but not exactly what they did. Now we know how the clock is reset in all cells. So we have a better idea of what to expect if we target these proteins with therapeutics."

... more about:
»BMAL1 »Cryptochrome »UNC »circadian »clock »drugs »genes »proteins

In all human cells, there are four genes – Cryptochrome, Period, CLOCK, and BMAL1 – that work in unison to control the cyclical changes in human physiology, such as blood pressure, body temperature, and rest-sleep cycles. The way in which these genes control physiology helps prepare us for the day.

This is called the circadian clock. It keeps us in proper physiological rhythm. When we try to fast-forward or rewind the natural 24-hour day, such as when we fly seven time zones away, our circadian clocks don't let us off easy; the genes and proteins need time to adjust. Jetlag is the feeling of our cells "realigning" to their new environment and the new starting point of a solar day.

Previously, scientists found that CLOCK and BMAL1 work in tandem to kick start the circadian clock. These genes bind to many other genes and turn them on to express proteins. This allows cells, such as brain cells, to behave the way we need them to at the start of a day.

Specifically, CLOCK and BMAL1 bind to a pair of genes called Period and Cryptochrome and turn them on to express proteins, which – after several modifications – wind up suppressing CLOCK and BMAL1 activity. Then, the Period and Cryptochrome proteins are degraded, allowing for the circadian clock to begin again.

"It's a feedback loop," said Sancar, who discovered Cryptochrome in 1998. "The inhibition takes 24 hours. This is why we can see gene activity go up and then down throughout the day."

But scientists didn't know exactly how that gene suppression and protein degradation happened at the back end. In fact, during experiments using one compound to stifle Cryptochrome and another drug to hinder Period, other researchers found inconsistent effects on the circadian clock, suggesting that Cryptochrome and Period did not have the same role. Sancar, a member of the UNC Lineberger Comprehensive Cancer Center who studies DNA repair in addition to the circadian clock, thought the two genes might have complementary roles. His team conducted experiments to find out.

Chris Selby, PhD, a research instructor in Sancar's lab, used two different kinds of genetics techniques to create the first-ever cell line that lacked both Cryptochrome and Period. (Each cell has two versions of each gene. Selby knocked out all four copies.)

Then Rui Ye, PhD, a postdoctoral fellow in Sancar's lab and first author of the Genes and Development paper, put Period back into the new mutant cells. But Period by itself did not inhibit CLOCK-BMAL1; it actually had no active function inside the cells.

Next, Ye put Cryptochrome alone back into the cell line. He found that Cryptochrome not only suppressed CLOCK and BMAL1, but it squashed them indefinitely.

"The Cryptochrome just sat there," Sancar said. "It wasn't degraded. The circadian clock couldn't restart."

For the final experiment, Sancar's team added Period to the cells with Cryptochrome. As Period's protein accumulated inside cells, the scientists could see that it began to remove the Cryptochrome, as well as CLOCK and BMAL1. This led to the eventual degradation of Cryptochrome, and then the CLOCK-BMAL1 genes were free to restart the circadian clock anew to complete the 24-hour cycle.

"What we've done is show how the entire clock really works," Sancar said. "Now, when we screen for drugs that target these proteins, we know to expect different outcomes and why we get those outcomes. Whether it's for treatment of jetlag or seasonal affective disorder or for controlling and optimizing cancer treatments, we had to know exactly how this clock worked."

Previous to this research, in 2010, Sancar's lab found that the level of an enzyme called XPA increased and decreased in synchrony with the circadian clock's natural oscillations throughout the day. Sancar's team proposed that chemotherapy would be most effective when XPA is at its lowest level. For humans, that's late in the afternoon.

"This means that DNA repair is controlled by the circadian clock," Sancar said. "It also means that the circadian clocks in cancer cells could become targets for cancer drugs in order to make other therapeutics more effective."


This research was funded by the National Institutes of Health and the Science Research Council and Academia Sinica in Taiwan.

Other authors of the Genes and Development paper are UNC postdoctoral fellows Yi-Ying Chiou, PhD, and Shobban Gaddameedhi, PhD, and UNC graduate student Irem Ozkan-Dagliyan.

Mark Derewicz | Eurek Alert!
Further information:

Further reports about: BMAL1 Cryptochrome UNC circadian clock drugs genes proteins

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>