Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC researchers discover how hepatitis C virus reprograms human liver cells

19.12.2012
Hepatitis C virus has evolved to invade and hijack the basic machinery of the human liver cell to ensure its survival and spread.

Researchers at the University of North have discovered how hepatitis C binds with and repurposes a basic component of cellular metabolism known as a microRNA to help protect and replicate the virus.


A cultured liver cancer cell infected with Hepatitis C. The virus, stained red, surrounds the blue-stained nucleus and is in the process of being reproduced by virus within the cytoplasm. Photo courtesy of Takahiro Masaki/UNC Lemon Lab

A cultured liver cancer cell infected with Hepatitis C. The virus, stained red, surrounds the blue-stained nucleus and is in the process of being reproduced by virus within the cytoplasm. Photo courtesy of Takahiro Masaki/UNC Lemon Lab

In a paper published online in the Proceedings of the National Academy of Sciences Dec. 17, researchers in the laboratory of Stanley M. Lemon, MD, professor of medicine and microbiology and immunology and member of UNC Lineberger Comprehensive Cancer Center, the Center for Translational Immunology, and the UNC Center for Infectious Disease, outline the critical role the microRNA known as miR-122 plays in the life cycle of the hepatitis C virus.

A chronic blood-borne virus that attacks the liver, hepatitis C infects more than four million in the United States and more than 130 million worldwide. Deaths from the infection surpass those due to HIV/AIDS in the U.S. The virus is currently the leading factor in liver transplantation and a major cause of liver cancer, the third most fatal cancer worldwide and the ninth most deadly in the United States. Chronic hepatitis virus infections factor into more than two-thirds of liver cancer deaths.

“There is no cancer in the United States that is increasing in incidence as fast as liver cancer, and that is because of hepatitis C,” said Dr. Lemon.

One question has been why hepatitis C virus specifically targets the liver. The research of Dr. Lemon and his colleagues points to the interaction between the hepatitis virus and miR-122 as the explanation.

The human genome contains around 1,000 microRNAs, strands of cellular material that play a diverse role in regulating gene expression and cellular metabolism. In a healthy liver cell, the microRNA miR-122 regulates the activity and decay of numerous cellular RNAs responsible for the production of proteins. It normally functions to block protein expression or to promote degradation of RNAs in the cell. The hepatitis C virus genome is entirely RNA, but miR-122 acts on it in a completely different manner - stabilizing it and enhancing its ability to produce viral proteins. In effect, it promotes and protects the invader.

“MicroRNAs almost always promote the degradation of cellular RNAs. This is actually stabilizing the viral RNA,” said Dr. Lemon.

While Dr. Lemon’s team has explored the manner in which hepatitis C exploits miR-122 to protect the viral RNA in previous publications, the new research suggests a much deeper bond between the microRNA and virus. Hepatitis C RNA contains a site that binds directly to the microRNA, and the team has shown that the presence of miR122 is actually crucial for functioning of the virus. Dr. Lemon believes the virus has evolved a unique dependency and that it requires the host’s microRNA to reproduce.

“It is a relationship that is unique to hepatitis C and not seen, as far as we know, with any other virus,” said Dr. Lemon.

Because of the importance of miR-122 to the replication of hepatitis C, the microRNA presents a promising target for new drugs. The pharmaceutical industry has already begun developing therapies that target miR-122. Dr. Lemon said that his research will help explain the underlying biology behind why these drugs work and suggest new possibilities for treatment by targeting other enzymes and proteins that play a role in the interactions between the virus and miR-122.

“If you target miR-122 with a therapeutic that blocks its function or sequesters it so it is no longer accessible to the virus, the replication of the virus is severely impaired,” said Dr. Lemon.

This work was supported by National Institutes of Health Grants R01-AI095690 and P20-CA150343 and the North Carolina University Cancer Research Fund.

William Davis | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>