Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC researchers create new tool to unravel the mysteries of metastasis

10.03.2014

The lab of Klaus Hahn, Ph.D., developed a new technique to help scientists map the interactions between the proteins at the heart of many diseases

Researchers at the UNC School of Medicine have devised a new biochemical technique that will allow them and other scientists to delve much deeper than ever before into the specific cellular circuitry that keeps us healthy or causes disease.


This is Klaus Hahn, Ph.D., UNC School of Medicine.

Credit: UNC

The method – developed in the lab of Klaus Hahn, PhD, and described in the journal Nature Chemical Biology – helps researchers study how specific proteins called kinases interact to trigger a specific cellular behavior, such as how a cell moves. These kinase interactions are extraordinarily complex, and their interactions remain largely unknown. But researchers do know that kinases are crucial operators in disease.

"I dare you to find a disease in which kinases are not involved," said Hahn, senior author of the study and the Thurman Distinguished Professor of Pharmacology. "These kinase processes have been very difficult to fully understand, but we all know they're very important."

For years, scientists have been able to tweak a kinase to see what would happen – such as causing cell death or cell movement or cellular signaling. But these experiments can only scratch the surface when it comes to understanding the cascade of kinase interactions that lead to a cellular behavior. Nor have these experiments been able to show the timing of rapid events. That's important, Hahn said, because when a protein is activated has a lot to do with how the cell will respond. Drug developers haven't been able to take this into account, which is likely one reason why some drugs that target proteins don't work as well as scientists had hoped.

"Imagine you're an electrician looking at a circuit board, and all you can do is plug something in and watch all the circuits light up, but you have no idea how the board really works," Hahn said. "What you'd like to do is put a probe on one component, turn it on, and see what immediately happens to the circuit components next to that one component."

If you could do this with all the circuit components, then this would allow you to learn how the circuitry is built.

"We are now doing this in live cells and seeing what happens," said Hahn, a member of the UNC Lineberger Comprehensive Cancer Center. "Kinases are the circuit components. And we can now activate just one kinase and study how it interacts with just one other molecule in real time."

These kinase circuits are critical for cellular activities, such as metabolism, signaling, protein regulation, movement, enzyme secretion, and many others. All kinases have nuanced differences but all of them share one little part that researchers call a domain.

Hahn's team, led in the lab by postdoctoral fellow Andrei Karginov, PhD, studied the sarcoma kinase (Src) and figured out a way to use that part to attach an artificial protein to render Src inactive. That artificial protein had a binding site. When Karginov added a drug analog to the solution in which the cell lived, the drug analog bound to that site, causing the kinase to reactivate. Karginov could activate the kinase to see how the circuits lit up – how the cell responded at any given time during the cell's transition from a stationary cell to a moving, metastatic cell.

They could see the reaction in real time, so they knew that what they did caused the cell to react. Other methods struggle with this. Genetically manipulating a cell, for instance, takes too much time, Hahn said. Before you can see the results of the experiment, other proteins compensate for the kinase that was shut down.

Hahn's technique got around that problem, which allowed his lab to take their work one step further.

Karginov developed a two-component system. In this new system, adding the drug caused the activated kinase to interact only with molecules that contain a second engineered protein. Not only could Karginov turn on the kinase at an exact time; he could now tell the kinase exactly which circuit component to interact with.

They found that when Src was linked only to the kinase FAK, the cell's shape changed; it extended huge arms, or protrusions, but the cell didn't create new protrusions. When Src was linked with only the kinase CAS, the cell added new protrusions and the cell's adhesion ability improved. These are the behaviors that cancer cells need to move. In essence, Hahn's lab figured out a way to pinpoint precise mechanisms underlying metastasis.

"What this paper really does is show how all of this can be done to any kinase you want," Hahn said. "Our lab is interested in metastasis. But our hope is that our tool goes well beyond our narrow field of study. You just have to ask yourself, 'how important are kinases to disease?' And the answer is they're very important; they are everywhere."

###

Klaus Hahn, PhD, the senior author of the study, has a joint appointment with the UNC Eshelman School of Pharmacy. Karginov, the first author, is now an assistant professor of pharmacology at the University of Illinois-Chicago. Other authors include UNC research assistant professor Dennis Tsygankov and UNC professor of pharmacology Timothy Elston, PhD.

This research was funded through a grant from the National Institutes of Health.

Mark Derewicz | EurekAlert!
Further information:
http://www.unch.unc.edu

Further reports about: UNC circuit interact interactions kinases metastasis pharmacology proteins

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>