Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC researchers create new tool to unravel the mysteries of metastasis

10.03.2014

The lab of Klaus Hahn, Ph.D., developed a new technique to help scientists map the interactions between the proteins at the heart of many diseases

Researchers at the UNC School of Medicine have devised a new biochemical technique that will allow them and other scientists to delve much deeper than ever before into the specific cellular circuitry that keeps us healthy or causes disease.


This is Klaus Hahn, Ph.D., UNC School of Medicine.

Credit: UNC

The method – developed in the lab of Klaus Hahn, PhD, and described in the journal Nature Chemical Biology – helps researchers study how specific proteins called kinases interact to trigger a specific cellular behavior, such as how a cell moves. These kinase interactions are extraordinarily complex, and their interactions remain largely unknown. But researchers do know that kinases are crucial operators in disease.

"I dare you to find a disease in which kinases are not involved," said Hahn, senior author of the study and the Thurman Distinguished Professor of Pharmacology. "These kinase processes have been very difficult to fully understand, but we all know they're very important."

For years, scientists have been able to tweak a kinase to see what would happen – such as causing cell death or cell movement or cellular signaling. But these experiments can only scratch the surface when it comes to understanding the cascade of kinase interactions that lead to a cellular behavior. Nor have these experiments been able to show the timing of rapid events. That's important, Hahn said, because when a protein is activated has a lot to do with how the cell will respond. Drug developers haven't been able to take this into account, which is likely one reason why some drugs that target proteins don't work as well as scientists had hoped.

"Imagine you're an electrician looking at a circuit board, and all you can do is plug something in and watch all the circuits light up, but you have no idea how the board really works," Hahn said. "What you'd like to do is put a probe on one component, turn it on, and see what immediately happens to the circuit components next to that one component."

If you could do this with all the circuit components, then this would allow you to learn how the circuitry is built.

"We are now doing this in live cells and seeing what happens," said Hahn, a member of the UNC Lineberger Comprehensive Cancer Center. "Kinases are the circuit components. And we can now activate just one kinase and study how it interacts with just one other molecule in real time."

These kinase circuits are critical for cellular activities, such as metabolism, signaling, protein regulation, movement, enzyme secretion, and many others. All kinases have nuanced differences but all of them share one little part that researchers call a domain.

Hahn's team, led in the lab by postdoctoral fellow Andrei Karginov, PhD, studied the sarcoma kinase (Src) and figured out a way to use that part to attach an artificial protein to render Src inactive. That artificial protein had a binding site. When Karginov added a drug analog to the solution in which the cell lived, the drug analog bound to that site, causing the kinase to reactivate. Karginov could activate the kinase to see how the circuits lit up – how the cell responded at any given time during the cell's transition from a stationary cell to a moving, metastatic cell.

They could see the reaction in real time, so they knew that what they did caused the cell to react. Other methods struggle with this. Genetically manipulating a cell, for instance, takes too much time, Hahn said. Before you can see the results of the experiment, other proteins compensate for the kinase that was shut down.

Hahn's technique got around that problem, which allowed his lab to take their work one step further.

Karginov developed a two-component system. In this new system, adding the drug caused the activated kinase to interact only with molecules that contain a second engineered protein. Not only could Karginov turn on the kinase at an exact time; he could now tell the kinase exactly which circuit component to interact with.

They found that when Src was linked only to the kinase FAK, the cell's shape changed; it extended huge arms, or protrusions, but the cell didn't create new protrusions. When Src was linked with only the kinase CAS, the cell added new protrusions and the cell's adhesion ability improved. These are the behaviors that cancer cells need to move. In essence, Hahn's lab figured out a way to pinpoint precise mechanisms underlying metastasis.

"What this paper really does is show how all of this can be done to any kinase you want," Hahn said. "Our lab is interested in metastasis. But our hope is that our tool goes well beyond our narrow field of study. You just have to ask yourself, 'how important are kinases to disease?' And the answer is they're very important; they are everywhere."

###

Klaus Hahn, PhD, the senior author of the study, has a joint appointment with the UNC Eshelman School of Pharmacy. Karginov, the first author, is now an assistant professor of pharmacology at the University of Illinois-Chicago. Other authors include UNC research assistant professor Dennis Tsygankov and UNC professor of pharmacology Timothy Elston, PhD.

This research was funded through a grant from the National Institutes of Health.

Mark Derewicz | EurekAlert!
Further information:
http://www.unch.unc.edu

Further reports about: UNC circuit interact interactions kinases metastasis pharmacology proteins

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>