Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC neuroscientists discover new 'mini-neural computer' in the brain

28.10.2013
Dendrites, the branch-like projections of neurons, were once thought to be passive wiring in the brain.

But now researchers at the University of North Carolina at Chapel Hill have shown that these dendrites do more than relay information from one neuron to the next. They actively process information, multiplying the brain's computing power.

"Suddenly, it's as if the processing power of the brain is much greater than we had originally thought," said Spencer Smith, PhD, an assistant professor in the UNC School of Medicine.

His team's findings, published October 27 in the journal Nature, could change the way scientists think about long-standing scientific models of how neural circuitry functions in the brain, while also helping researchers better understand neurological disorders.

"Imagine you're reverse engineering a piece of alien technology, and what you thought was simple wiring turns out to be transistors that compute information," Smith said. "That's what this finding is like. The implications are exciting to think about."

Axons are where neurons conventionally generate electrical spikes, but many of the same molecules that support axonal spikes are also present in the dendrites. Previous research using dissected brain tissue had demonstrated that dendrites can use those molecules to generate electrical spikes themselves, but it was unclear whether normal brain activity involved those dendritic spikes. For example, could dendritic spikes be involved in how we see?

The answer, Smith's team found, is yes. Dendrites effectively act as mini-neural computers, actively processing neuronal input signals themselves.

Directly demonstrating this required a series of intricate experiments that took years and spanned two continents, beginning in senior author Michael Hausser's lab at University College London, and being completed after Smith and Ikuko Smith, PhD, DVM, set up their own lab at the University of North Carolina. They used patch-clamp electrophysiology to attach a microscopic glass pipette electrode, filled with a physiological solution, to a neuronal dendrite in the brain of a mouse. The idea was to directly "listen" in on the electrical signaling process.

"Attaching the pipette to a dendrite is tremendously technically challenging," Smith said. "You can't approach the dendrite from any direction. And you can't see the dendrite. So you have to do this blind. It's like fishing if all you can see is the electrical trace of a fish." And you can't use bait. "You just go for it and see if you can hit a dendrite," he said. "Most of the time you can't."

But Smith built his own two-photon microscope system to make things easier.

Once the pipette was attached to a dendrite, Smith's team took electrical recordings from individual dendrites within the brains of anesthetized and awake mice. As the mice viewed visual stimuli on a computer screen, the researchers saw an unusual pattern of electrical signals – bursts of spikes – in the dendrite.

Smith's team then found that the dendritic spikes occurred selectively, depending on the visual stimulus, indicating that the dendrites processed information about what the animal was seeing.

To provide visual evidence of their finding, Smith's team filled neurons with calcium dye, which provided an optical readout of spiking. This revealed that dendrites fired spikes while other parts of the neuron did not, meaning that the spikes were the result of local processing within the dendrites.

Study co-author Tiago Branco, PhD, created a biophysical, mathematical model of neurons and found that known mechanisms could support the dendritic spiking recorded electrically, further validating the interpretation of the data.

"All the data pointed to the same conclusion," Smith said. "The dendrites are not passive integrators of sensory-driven input; they seem to be a computational unit as well."

His team plans to explore what this newly discovered dendritic role may play in brain circuitry and particularly in conditions like Timothy syndrome, in which the integration of dendritic signals may go awry.

Study co-authors were Ikuko Smith, PhD, DVM, Tiago Branco, PhD, and Michael Häusser, PhD. This work was supported by a Long-Term Fellowship and a Career Development Award from the Human Frontier Science Program, and a Klingenstein Fellowship to S. Smith, a Helen Lyng White Fellowship to I. Smith, a Wellcome Trust and Royal Society Fellowship, and Medical Research Council (UK) support to T. Branco, and grants from the Wellcome Trust, the European Research Council, and Gatsby Charitable Foundation to M. Häusser.

Mark Derewicz | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>