Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the UNC-45 protein brings muscles into shape

18.01.2013
Insight in the precise arrangement of muscle proteins provides new indications of muscular diseases and cardiac insufficiency

Researchers of CECAD, the Cluster of Excellence at the University of Cologne, Germany, and the Research Institute of Molecular Pathology (IMP) in Vienna, Austria, provide mechanistic insight how muscle assembly is regulated in development and aging.


The present work by Gazda et al demonstrates that UNC-45 establishes a multi-chaperone complex that allows the folding of myosin in a defined array along the thick filament. The cartoon illustrates the “patterned folding” principle, of how UNC-45 composes a protein assembly line that places the chaperone mechanics Hsp70 and Hsp90 (highlighted) at regularly spaced positions to work on the series of motor domains protruding from the myosin filament.
Copyright – please specify: With friendly permission from David Greenlees

Muscle formation and function rely on the correct assembly of myofilaments that are composed of actin and myosin molecules. In a novel study the researchers now discovered the molecular basis underlying the patterned folding and assembly of myosin filaments.

Muscle development and function rely on the correct assembly of contractile units called the sarcomeres. Its main components, thin (actin) and thick (myosin) filaments are organized in a precisely ordered, quasi-crystalline protein framework that mediates muscle contraction. Although the overall architecture of the sarcomere has been studied in detail, little is known about its complicated assembly process. In particular, the mechanism of myosin incorporation into thick filaments is poorly understood.

The Hoppe lab and others have shown before that the folding of myosin involves the assistance of three molecular chaperones including Hsp70, Hsp90 and a myosin-specific assembly protein called UNC-45. To address the underlying principle of how myosin filaments are formed in muscle cells, Prof. Thorsten Hoppe and his postdoc Wojtek Pokrzywa teamed up with PD Dr. Tim Clausen and his group to perform a detailed structural and physiological analysis of the UNC-45 protein from the soil nematode Caenorhabditis elegans.

The striking findings of this collaboration, published in the scientific journal Cell, revealed that UNC-45 can polymerize into a linear protein chain. As a consequence, multiple binding sites for the myosin substrate as well as for the co-working chaperones Hsp70 and Hsp90 are periodically arranged along the UNC-45 chain. Indeed, this multi-chaperone complex that works on a series of myosin motor domains mimics an industrial assembly line (Fig.1). This mechanism decisively alters the current view of how muscle filaments are formed during development and kept in shape upon aging:

(1) The UNC-45 chaperone functions beyond simple nascent protein folding. It represents a novel type of filament assembly factor that provides the molecular scaffold for Hsp70 and Hsp90 chaperones to work at regularly spaced positions on captured client proteins. It will be interesting to see whether this "patterned folding" mechanism is critical for the assembly of other protein filaments.

(2) The Hoppe lab showed before that aberrant UNC-45 function is associated with severe muscle defects resulting in skeletal and cardiac myopathies. Therefore, the discovered mechanism may help to develop strategies against diseases connected with myosin assembly defects.


Publication:
Gazda et al., The Myosin Chaperone UNC-45 Is Organized in Tandem Modules to Support Myofilament Formation in C. elegans, Cell (2013), http://dx.doi.org/10.1016/j.cell.2012.12.025

For further Information, please contact:
Prof. Thorsten Hoppe
CECAD Cluster of Excellence at the Universität of Cologne
Zülpicher Straße 47a . 50674 Köln
+ 49 (0) 221-470-1503 . e-mail: thorsten.hoppe@uni-koeln.de

CECAD PR & Marketing, Astrid Bergmeister
+ 49 (0) 221-470-5287 . e-mail: astrid.bergmeister@uk-koeln.de

Astrid Bergmeister | idw
Further information:
http://www.uni-koeln.de
http://dx.doi.org/10.1016/j.cell.2012.12.025

More articles from Life Sciences:

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

nachricht How Neural Circuits Implement Natural Vision
24.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>