Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the UNC-45 protein brings muscles into shape

18.01.2013
Insight in the precise arrangement of muscle proteins provides new indications of muscular diseases and cardiac insufficiency

Researchers of CECAD, the Cluster of Excellence at the University of Cologne, Germany, and the Research Institute of Molecular Pathology (IMP) in Vienna, Austria, provide mechanistic insight how muscle assembly is regulated in development and aging.


The present work by Gazda et al demonstrates that UNC-45 establishes a multi-chaperone complex that allows the folding of myosin in a defined array along the thick filament. The cartoon illustrates the “patterned folding” principle, of how UNC-45 composes a protein assembly line that places the chaperone mechanics Hsp70 and Hsp90 (highlighted) at regularly spaced positions to work on the series of motor domains protruding from the myosin filament.
Copyright – please specify: With friendly permission from David Greenlees

Muscle formation and function rely on the correct assembly of myofilaments that are composed of actin and myosin molecules. In a novel study the researchers now discovered the molecular basis underlying the patterned folding and assembly of myosin filaments.

Muscle development and function rely on the correct assembly of contractile units called the sarcomeres. Its main components, thin (actin) and thick (myosin) filaments are organized in a precisely ordered, quasi-crystalline protein framework that mediates muscle contraction. Although the overall architecture of the sarcomere has been studied in detail, little is known about its complicated assembly process. In particular, the mechanism of myosin incorporation into thick filaments is poorly understood.

The Hoppe lab and others have shown before that the folding of myosin involves the assistance of three molecular chaperones including Hsp70, Hsp90 and a myosin-specific assembly protein called UNC-45. To address the underlying principle of how myosin filaments are formed in muscle cells, Prof. Thorsten Hoppe and his postdoc Wojtek Pokrzywa teamed up with PD Dr. Tim Clausen and his group to perform a detailed structural and physiological analysis of the UNC-45 protein from the soil nematode Caenorhabditis elegans.

The striking findings of this collaboration, published in the scientific journal Cell, revealed that UNC-45 can polymerize into a linear protein chain. As a consequence, multiple binding sites for the myosin substrate as well as for the co-working chaperones Hsp70 and Hsp90 are periodically arranged along the UNC-45 chain. Indeed, this multi-chaperone complex that works on a series of myosin motor domains mimics an industrial assembly line (Fig.1). This mechanism decisively alters the current view of how muscle filaments are formed during development and kept in shape upon aging:

(1) The UNC-45 chaperone functions beyond simple nascent protein folding. It represents a novel type of filament assembly factor that provides the molecular scaffold for Hsp70 and Hsp90 chaperones to work at regularly spaced positions on captured client proteins. It will be interesting to see whether this "patterned folding" mechanism is critical for the assembly of other protein filaments.

(2) The Hoppe lab showed before that aberrant UNC-45 function is associated with severe muscle defects resulting in skeletal and cardiac myopathies. Therefore, the discovered mechanism may help to develop strategies against diseases connected with myosin assembly defects.


Publication:
Gazda et al., The Myosin Chaperone UNC-45 Is Organized in Tandem Modules to Support Myofilament Formation in C. elegans, Cell (2013), http://dx.doi.org/10.1016/j.cell.2012.12.025

For further Information, please contact:
Prof. Thorsten Hoppe
CECAD Cluster of Excellence at the Universität of Cologne
Zülpicher Straße 47a . 50674 Köln
+ 49 (0) 221-470-1503 . e-mail: thorsten.hoppe@uni-koeln.de

CECAD PR & Marketing, Astrid Bergmeister
+ 49 (0) 221-470-5287 . e-mail: astrid.bergmeister@uk-koeln.de

Astrid Bergmeister | idw
Further information:
http://www.uni-koeln.de
http://dx.doi.org/10.1016/j.cell.2012.12.025

More articles from Life Sciences:

nachricht Tiny songbird discovered to migrate non-stop, 1,500 miles over the Atlantic
01.04.2015 | University of Massachusetts at Amherst

nachricht The 'intraterrestrials': New viruses discovered in ocean depths
01.04.2015 | National Science Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lizard activity levels can help scientists predict environmental change

Research study provides new tools to assess warming temperatures

Spring is here and ectotherms, or animals dependent on external sources to raise their body temperature, are becoming more active. Recent studies have shown...

Im Focus: Hannover Messe 2015: Saving energy with smart façades

Glass-fronted office buildings are some of the biggest energy consumers, and regulating their temperature is a big job. Now a façade element developed by Fraunhofer researchers and designers for glass fronts is to reduce energy consumption by harnessing solar thermal energy. A demonstrator version will be on display at Hannover Messe.

In Germany, buildings account for almost 40 percent of all energy usage. Heating, cooling and ventilating homes, offices and public spaces is expensive – and...

Im Focus: Nonoxide ceramics open up new perspectives for the chemical and plant engineering

Outstanding chemical, thermal and tribological properties predestine silicon carbide for the production of ceramic components of high volume. A novel method now overcomes the procedural and technical limitations of conventional design methods for the production of components with large differences in wall thickness and demanding undercuts.

Extremely hard as diamond, shrinking-free manufacturing, resistance to chemicals, wear and temperatures up to 1300 °C: Silicon carbide (SiSiC) bundles all...

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

NASA covers Super Typhoon Maysak's rainfall, winds, clouds, eye

01.04.2015 | Earth Sciences

Quantum teleportation on a chip

01.04.2015 | Information Technology

Galaxy Clusters Formed as 'Fireworks'

01.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>