Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the UNC-45 protein brings muscles into shape

18.01.2013
Insight in the precise arrangement of muscle proteins provides new indications of muscular diseases and cardiac insufficiency

Researchers of CECAD, the Cluster of Excellence at the University of Cologne, Germany, and the Research Institute of Molecular Pathology (IMP) in Vienna, Austria, provide mechanistic insight how muscle assembly is regulated in development and aging.


The present work by Gazda et al demonstrates that UNC-45 establishes a multi-chaperone complex that allows the folding of myosin in a defined array along the thick filament. The cartoon illustrates the “patterned folding” principle, of how UNC-45 composes a protein assembly line that places the chaperone mechanics Hsp70 and Hsp90 (highlighted) at regularly spaced positions to work on the series of motor domains protruding from the myosin filament.
Copyright – please specify: With friendly permission from David Greenlees

Muscle formation and function rely on the correct assembly of myofilaments that are composed of actin and myosin molecules. In a novel study the researchers now discovered the molecular basis underlying the patterned folding and assembly of myosin filaments.

Muscle development and function rely on the correct assembly of contractile units called the sarcomeres. Its main components, thin (actin) and thick (myosin) filaments are organized in a precisely ordered, quasi-crystalline protein framework that mediates muscle contraction. Although the overall architecture of the sarcomere has been studied in detail, little is known about its complicated assembly process. In particular, the mechanism of myosin incorporation into thick filaments is poorly understood.

The Hoppe lab and others have shown before that the folding of myosin involves the assistance of three molecular chaperones including Hsp70, Hsp90 and a myosin-specific assembly protein called UNC-45. To address the underlying principle of how myosin filaments are formed in muscle cells, Prof. Thorsten Hoppe and his postdoc Wojtek Pokrzywa teamed up with PD Dr. Tim Clausen and his group to perform a detailed structural and physiological analysis of the UNC-45 protein from the soil nematode Caenorhabditis elegans.

The striking findings of this collaboration, published in the scientific journal Cell, revealed that UNC-45 can polymerize into a linear protein chain. As a consequence, multiple binding sites for the myosin substrate as well as for the co-working chaperones Hsp70 and Hsp90 are periodically arranged along the UNC-45 chain. Indeed, this multi-chaperone complex that works on a series of myosin motor domains mimics an industrial assembly line (Fig.1). This mechanism decisively alters the current view of how muscle filaments are formed during development and kept in shape upon aging:

(1) The UNC-45 chaperone functions beyond simple nascent protein folding. It represents a novel type of filament assembly factor that provides the molecular scaffold for Hsp70 and Hsp90 chaperones to work at regularly spaced positions on captured client proteins. It will be interesting to see whether this "patterned folding" mechanism is critical for the assembly of other protein filaments.

(2) The Hoppe lab showed before that aberrant UNC-45 function is associated with severe muscle defects resulting in skeletal and cardiac myopathies. Therefore, the discovered mechanism may help to develop strategies against diseases connected with myosin assembly defects.


Publication:
Gazda et al., The Myosin Chaperone UNC-45 Is Organized in Tandem Modules to Support Myofilament Formation in C. elegans, Cell (2013), http://dx.doi.org/10.1016/j.cell.2012.12.025

For further Information, please contact:
Prof. Thorsten Hoppe
CECAD Cluster of Excellence at the Universität of Cologne
Zülpicher Straße 47a . 50674 Köln
+ 49 (0) 221-470-1503 . e-mail: thorsten.hoppe@uni-koeln.de

CECAD PR & Marketing, Astrid Bergmeister
+ 49 (0) 221-470-5287 . e-mail: astrid.bergmeister@uk-koeln.de

Astrid Bergmeister | idw
Further information:
http://www.uni-koeln.de
http://dx.doi.org/10.1016/j.cell.2012.12.025

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>