Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the UNC-45 protein brings muscles into shape

18.01.2013
Insight in the precise arrangement of muscle proteins provides new indications of muscular diseases and cardiac insufficiency

Researchers of CECAD, the Cluster of Excellence at the University of Cologne, Germany, and the Research Institute of Molecular Pathology (IMP) in Vienna, Austria, provide mechanistic insight how muscle assembly is regulated in development and aging.


The present work by Gazda et al demonstrates that UNC-45 establishes a multi-chaperone complex that allows the folding of myosin in a defined array along the thick filament. The cartoon illustrates the “patterned folding” principle, of how UNC-45 composes a protein assembly line that places the chaperone mechanics Hsp70 and Hsp90 (highlighted) at regularly spaced positions to work on the series of motor domains protruding from the myosin filament.
Copyright – please specify: With friendly permission from David Greenlees

Muscle formation and function rely on the correct assembly of myofilaments that are composed of actin and myosin molecules. In a novel study the researchers now discovered the molecular basis underlying the patterned folding and assembly of myosin filaments.

Muscle development and function rely on the correct assembly of contractile units called the sarcomeres. Its main components, thin (actin) and thick (myosin) filaments are organized in a precisely ordered, quasi-crystalline protein framework that mediates muscle contraction. Although the overall architecture of the sarcomere has been studied in detail, little is known about its complicated assembly process. In particular, the mechanism of myosin incorporation into thick filaments is poorly understood.

The Hoppe lab and others have shown before that the folding of myosin involves the assistance of three molecular chaperones including Hsp70, Hsp90 and a myosin-specific assembly protein called UNC-45. To address the underlying principle of how myosin filaments are formed in muscle cells, Prof. Thorsten Hoppe and his postdoc Wojtek Pokrzywa teamed up with PD Dr. Tim Clausen and his group to perform a detailed structural and physiological analysis of the UNC-45 protein from the soil nematode Caenorhabditis elegans.

The striking findings of this collaboration, published in the scientific journal Cell, revealed that UNC-45 can polymerize into a linear protein chain. As a consequence, multiple binding sites for the myosin substrate as well as for the co-working chaperones Hsp70 and Hsp90 are periodically arranged along the UNC-45 chain. Indeed, this multi-chaperone complex that works on a series of myosin motor domains mimics an industrial assembly line (Fig.1). This mechanism decisively alters the current view of how muscle filaments are formed during development and kept in shape upon aging:

(1) The UNC-45 chaperone functions beyond simple nascent protein folding. It represents a novel type of filament assembly factor that provides the molecular scaffold for Hsp70 and Hsp90 chaperones to work at regularly spaced positions on captured client proteins. It will be interesting to see whether this "patterned folding" mechanism is critical for the assembly of other protein filaments.

(2) The Hoppe lab showed before that aberrant UNC-45 function is associated with severe muscle defects resulting in skeletal and cardiac myopathies. Therefore, the discovered mechanism may help to develop strategies against diseases connected with myosin assembly defects.


Publication:
Gazda et al., The Myosin Chaperone UNC-45 Is Organized in Tandem Modules to Support Myofilament Formation in C. elegans, Cell (2013), http://dx.doi.org/10.1016/j.cell.2012.12.025

For further Information, please contact:
Prof. Thorsten Hoppe
CECAD Cluster of Excellence at the Universität of Cologne
Zülpicher Straße 47a . 50674 Köln
+ 49 (0) 221-470-1503 . e-mail: thorsten.hoppe@uni-koeln.de

CECAD PR & Marketing, Astrid Bergmeister
+ 49 (0) 221-470-5287 . e-mail: astrid.bergmeister@uk-koeln.de

Astrid Bergmeister | idw
Further information:
http://www.uni-koeln.de
http://dx.doi.org/10.1016/j.cell.2012.12.025

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>