Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMN research pinpoints microRNA tied to colon cancer tumor growth

02.10.2014

Researchers at the University of Minnesota have identified microRNAs that may cause colon polyps from turning cancerous. The finding could help physicians provide more specialized, and earlier, treatment before colon cancer develops. The findings are published today in The Journal of Pathology.

The American Cancer Society estimates over 134,000 people will be diagnosed with colon cancer in 2014, despite the expanded screening processes now available. This year alone, about 50,000 people will die because of the disease.

Research was led by Subbaya Subramanian, Ph.D., assistant professor in the Division of Basic and Translational Research in the Department of Surgery in the University of Minnesota Medical School and member of the Masonic Cancer Center, University of Minnesota.

"With the advanced screenings we now have available, why are so many people still being diagnosed with colon cancer? We really wanted to understand if there was a way to stop the disease before it starts, before benign polyps became cancerous tumors," said Subramanian.

By looking at microRNA, Subramanian and his colleagues hoped to unlock what pieces were present in colon polyps that developed into cancer. They found miR-182 and miR-503 work together to transform a benign polyp to a cancerous tumor by holding down the cell's ability to create the tumor suppressing protein FBXW7.

This was determined by looking at a benign polyp cell line. In this line, miR-182 was present and appeared as a feature of the creation of adenomas, or polyps. Researchers then introduced miR-503 to the cell line and noted the partnership limited the tumor suppressing protein and polyps had a much higher potential for becoming cancerous.

Armed with this knowledge, the researchers then took a closer look at actual patient data. They examined the expression of miR-182 and miR-503 in colon cancer patients with a 12-year survival outcome data. When both microRNAs were present at higher levels, decreased patient survival was clearly correlated.

"It suggests a biomarker for colon cancer patients, something ideally physicians can one day screen for as a diagnostic and prognostic tool," said Subramanian.

Subramanian believes the next step will be determining if drugs are able to target miR-182 and -503, as well was what miR-182 and -503 do after suppressing FBXW7. He hopes to develop a clinical test as well as a translational target for treatments to be utilized in a clinical setting.

###

This study was supported by the Department of Surgery, University of Minnesota Medical School. Patient sets were utilized in partnership with the Mayo Clinic, Rochester, MN.

The University of Minnesota Medical School, with its two campuses in the Twin Cities and Duluth, is a leading educator of the next generation of physicians. Our graduates and the school's 3,800 faculty physicians and scientists advance patient care, discover biomedical research breakthroughs with more than $180 million in sponsored research annually, and enhance health through world-class patient care for the state of Minnesota and beyond. Visit http://www.med.umn.edu to learn more.

Masonic Cancer Center, University of Minnesota is part of the University's Academic Health Center. It is designated by the National Cancer Institute as a Comprehensive Cancer Center. For more information about the Masonic Cancer Center, visit http://www.cancer.umn.edu or call 612-624-2620.

Caroline Marin | Eurek Alert!

Further reports about: CANCER Department Health Subramanian cancer patients cancerous colon colon cancer patients polyps tumor growth

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>