Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMMS researchers isolate gene mutations in patients with inherited amyotrophic lateral sclerosis

16.07.2012
Disruption of cytoskeleton pathways contribute to ALS pathogenesis

A new genetic mutation that causes familial amyotrophic lateral sclerosis (ALS), a fatal neurological disorder also known as Lou Gehrig's Disease, has been identified by a team of scientists led by researchers at the University of Massachusetts Medical School (UMMS).

Mutations to the profilin (PFN1) gene, which is essential to the growth and development of nerve cell axons, is estimated to account for one to two percent of inherited ALS cases. The finding, described today in the online edition of Nature, points to defects in a neuron's cytoskeleton structure as a potential common feature among diverse ALS genes.

"This discovery identifies what may possibly be a common biological mechanism involved across familial ALS cases regardless of genetics," said John Landers, PhD, associate professor of neurology and senior author of the study. "We know of at least three other ALS genes, in addition to PFN1, that adversely impact axon growth. If indeed, this is part of the disease's mechanism, then it might also be a potential target for therapeutics."

Robert Brown, MD, DPhil, a co-author on the study and chair of neurology at UMass Medical School, said "Dr. Landers has done great work in defining this new pathway for motor neuron death. We are delighted to have identified the defects in families from the U.S., Israel and France that we have been investigating for several years. Our finding is particularly exciting because it may provide new insights into ALS treatment targets."

ALS is a progressive, neurodegenerative disorder affecting the motor neurons in the central nervous system. As motor neurons die, the brain's ability to send signals to the body's muscles is compromised. This leads to loss of voluntary muscle movement, paralysis and eventually respiratory failure. The cause of most cases of ALS is not known. Approximately 10 percent of cases are inherited. Though investigators at UMass Medical School and elsewhere have identified several genes shown to cause inherited or familial ALS, almost 50 percent of these cases have an unknown genetic cause.

The current Nature study details the discovery of the PFN1 gene mutation among two large ALS families. Both families were negative for known ALS-causing mutations and displayed familial relationships that suggested a dominant inheritance mode for the disease. For each family, two affected members with maximum genetic distance were selected for deep DNA sequencing. To identify an ALS-causing mutation, genetic variations between the family members were identified and screened against known databases of human genetic variation, such as the 1000 Genomes Project. This narrowed down the resulting number of candidate, ALS-causing mutations to two within the first family and three within the second. Interestingly, both families contained different mutations within the same gene – PFN1, the likely causative mutation. With additional screening, the team documented that in a total of 274 families sequenced, seven contained a mutation to the PFN1 gene, establishing it as a likely cause for ALS.

While it is not certain how the PFN1 mutation causes ALS, the cellular functions it controls within the motor neurons are responsible for regulation of a number of activities, including the growth and development of the axon, the slender projection through which neurons transmit electrical impulses to neighboring cells, such as muscle. When introduced into motor neuron cells, normal PFN1 protein was found diffused throughout the cytoplasm. Conversely, the mutant PFN1 observed in ALS patients was found to collect in dense aggregates, keeping it from functioning properly. Motor neurons producing mutated PFN1 showed markedly shorter axon outgrowth.

"The discovery that mutant PFN1 interferes with axon outgrowth was very exciting to us," said Claudia Fallini, PhD, a postdoctoral researcher at Emory University School of Medicine who collaborated with the UMass Medical School authors to investigate PFN1's functions in cultured motor neurons. "It suggests that alterations in actin dynamics may be an important mechanism at the basis of motor neuron degeneration."

"In healthy neurons, PFN1 acts almost like a railroad tie for fibrous filaments called actin, which make up the axon" said Landers. "PFN1 helps bind these filaments to each other, promoting outgrowth of the axon. Without properly functioning PFN1 these filaments can't come together. Here we show that mutant PFN1 may contribute to ALS pathogeneses by accumulating in these aggregates and altering the actin dynamics in a way that inhibits axon outgrowth."

Drs. Landers and Brown are members of the Neurotherapeutics Institute at the University of Massachusetts Medical School.

Grant support for this project was provided by the NIH/NINDS 1R01NS065847 JEL, 1R01NS050557 RHB, RC2-NS070-342 RHB, Project ALS and P2ALS, the Angel Fund for ALS Research, the Muscular Dystrophy Association MDA173851 WR and AriSLA co-financed with support of 5x1000 Healthcare research of the Ministry of Health EXOMEFALS NT, CG, VS, JEL. Support was also provided by an SMA Europe fellowship to CF.

About the University of Massachusetts Medical School

The University of Massachusetts Medical School has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $270 million in research funding annually, 80 percent of which comes from federal funding sources. The work of UMMS researcher Craig Mello, PhD, an investigator of the prestigious Howard Hughes Medical Institute (HHMI), and his colleague Andrew Fire, PhD, then of the Carnegie Institution of Washington, toward the discovery of RNA interference was awarded the 2006 Nobel Prize in Physiology or Medicine and has spawned a new and promising field of research, the global impact of which may prove astounding. UMMS is the academic partner of UMass Memorial Health Care, the largest health care provider in Central Massachusetts.

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>