Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMMS researchers identify epigenetic signatures of autism

08.11.2011
Analysis reveals overlap between genetic and epigenetic risk maps of autism

Scientists at the University of Massachusetts Medical School are the first to map epigenetic changes in neurons from the brains of individuals with autism, providing empirical evidence that epigenetic alterations—changes in gene expression caused by mechanisms other than changes in the underlying DNA sequence—may play an important role in the disease.

Analysis of these variations revealed hundreds of genetic sites that overlap with many of the genetic regions known to confer risk for Autism Spectrum Disorders. The study was published in Online First by the Archives of General Psychiatry.

Autism spectrum disorders are a group of complex biological illnesses with a variety of origins. People with a disorder on the autism spectrum often struggle with social interactions and communication. Many suffer from delayed language skills, as well as restricted interests and repetitive behavior. It's estimated that only 10 percent of cases are a result of genetic mutations. The cause of the remaining 90 percent of cases is unknown.

"We know that autism is a biological disorder," said Schahram Akbarian, MD, PhD, director of the Irving S. and Betty Brudnick Neuropsychiatric Research Institute and professor of psychiatry at the University of Massachusetts Medical School. "But very little is known about the genetic and molecular underpinnings associated with the disorder. It's been hypothesized that an epigenetic model of autism could potentially explain why genetic screening strategies for the disorder have been so difficult and frustrating. Our study is the first clear evidence gained exclusively from nerve cells pointing to a link between epigenetic changes and known genetic risk sites for autism."

In order to see if epigenetic changes were occurring in individuals with autism, Akbarian and colleagues developed a novel method for extracting chromatin – the packaging material that compresses DNA into a smaller volume so it can fit inside a cell's nucleus – from the nuclei of postmortem nerve cells. Using tissue samples obtained through the Autism Tissue Program from 16 individuals diagnosed with an autism spectrum disorder, Akbarian and colleagues used deep sequencing technology to compare these tissue samples with 16 control samples for changes in histone methylation, a small protein that attaches to DNA and controls gene expression and activity.

After analyzing the sequenced DNA data, Zhiping Weng, PhD, director of the Program in Bioinformatics and Integrative Biology and professor of biochemistry & molecular pharmacology at UMass Medical School, found hundreds of sites along the genome affected by an alteration in histone methylation in the brain tissue from the autistic individuals. However, less than 10 percent of the affected genes they observed were the result of a mutation to the DNA sequence.

"Neurons from subjects with autism show changes in chromatin structures at hundreds of loci genome-wide, revealing considerable overlap between genetic and epigenetic risk maps of developmental brain disorders," said Akbarian.

"Our understanding of psychiatric disorders, such as autism, is burdened by the fact that we often can't see the structural changes that lead to disease," said Akbarian. "It's only by studying these diseases on the molecular level that scientists can begin to get a handle on how they work and understand how to treat them."

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $307 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care.

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>