Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Umeå researchers describe future target mechanism for antibiotics

17.01.2011
So-called type-3 secretion systems of pathogenic bacteria may be a suitable point of attack for future antibiotics. This is shown by Professor Maria Fällman and her associates at Umeå University in Sweden in the Proceeding of the National Academy of Sciences, PNAS, in the US.

Many disease-causing bacteria, such as Yersinia, Salmonella, Shigella, and Chlamydia make use of a dedicated protein transport system to transmit pathogenic proteins to host cells. These so-called type-3 secretion systems (T3SS) consist of hollow pin-like structures on the outer shell of the bacteria. Virulence proteins that are exported through this structure are transported into host cells via an unknown mechanism.

The mechanism for this transport has previously been proposed to be occurring by injection via the pin-like structure directly from the inner part of the bacterium into the cytoplasma of the host cell. These researchers at Umeå University have now shown that virulence proteins exist on the outside of the bacterium before it has bound to the host cell and that these proteins can be transported into the host cell via a bacteria-associated protein complex. These pioneering findings are a major breakthrough in our understanding of T3SS-dependent bacteria and also open new avenues for developing antibiotics that are more specific to this type of bacteria.

In modern medical research scientists are looking for new methods for delivering proteins into cancer cells. These findings may facilitate the development of such systems by making use of the T3SS protein complex.

For more information, please contact:
Karen Akopyan, post-doc at the Department of Molecular Biology, Umeå University at:
phone: +46 (0)90-785 67 40
e-mail karen.akopyan@molbiol.umu.se
Tomas Edgren, post-doc at the Department of Molecular Biology, Umeå University at:
phone: +46 (0)90-785 31 39
e-mail tomas.edgren@molbiol.umu.se
Maria Fällman, professor at the Department of Molecular Biology, Umeå University at:
phone: +46 (0)90-785 67 25
mobile phone: +46 (0)70-631 51 81
e-mail maria.fallman@molbiol.umu.se
Reference:
Translocation of surface-localized effectors in type III secretion. Karen Akopyana, Tomas Edgren, Helen Wang-Edgren, Roland Rosqvist, Anna Fahlgren, Hans Wolf-Watz, and Maria Fällman. PNAS Early Edition 10-14 January 2011.

Hans Fällman | idw
Further information:
http://www.umu.se
http://www.pnas.org/cgi/doi/10.1073/pnas.1013888108

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>