Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMD researchers develop tool to better visualize, analyze human genomic data

04.08.2014

Scientists at the University of Maryland have developed a new, web-based tool that enables researchers to quickly and easily visualize and compare large amounts of genomic information resulting from high-throughput sequencing experiments. The free tool, called Epiviz, was described in a paper published online on August 3, 2014 in the journal Nature Methods.

Next-generation sequencing has revolutionized functional genomics. These techniques are key to understanding the molecular mechanisms underlying cell function in healthy and diseased individuals and the development of diseases like cancer. Data from multiple experiments need to be integrated, but the growing number of data sets makes a thorough comparison and analysis of results challenging.

To visualize and browse entire genomes, graphical interfaces that display information from a database of genomic data—called "genome browsers"—were created. Epiviz offers a major advantage over browsers currently available: Epiviz seamlessly integrates with the open-source Bioconductor analysis software widely used by genomic scientists, through its Epivizr Bioconductor package.

"Prior tools limited visualization to presentation and dissemination, rather than a hybrid tool integrating interactive visualization with algorithmic analysis," says Héctor Corrada Bravo, assistant professor in computer science at UMD. He also has an appointment in the Center for Bioinformatics and Computational Biology of the university's Institute for Advanced Computer Studies.

Because Epiviz is based on the Bioconductor infrastructure, the tool supports many popular next-generation sequencing techniques, such as ChIP-seq, which is used to analyze protein interactions with DNA; RNA-seq, which reveals a comprehensive snapshot of the abundance of RNAs in cells; and DNA methylation analyses.

Epiviz implements multiple visualization methods for location-based data (such as genomic regions of interest) and feature-based data (such as gene expression), using interactive data visualization techniques not available in web-based genome browsers. For example, because display objects are mapped directly to data elements, Epiviz links data across different visualizations giving users visual insights of the spatial relationships of multiple data sets. The tool is designed to allow biomedical scientists to easily incorporate their own visualizations.

In the Nature Methods paper, Corrada Bravo, UMD computer science doctoral student Florin Chelaru, and undergraduate research assistants from Williams College in Mass. and Washington University in St. Louis used Epiviz to visualize and analyze DNA methylation and gene expression data in colon cancer. Changes in DNA methylation patterns compared with normal tissue have been associated with a large number of human malignancies.

Using Epiviz and Bioconductor, the research team found consistent regions of DNA methylation changes in colon cancer samples generated by the public Cancer Genome Atlas project and similar gene expression in these regions of DNA methylation changes in other cancer types. The results were in agreement with previous experiments, which were conducted by researchers at Johns Hopkins University in collaboration with Corrada Bravo, showing DNA methylation changes across large regions in the colon cancer genome.

"Epiviz helps biomedical scientists meet the challenge of visualizing large genomic data sets while supporting creative data analysis in a collaborative environment," says Corrada Bravo.

###

This research was supported by the National Institutes of Health (Award Nos. HG006102 and HG005220), Illumina Corp. and Genentech. The content of this article does not necessarily reflect the views of these organizations.

Héctor Corrada Bravo website: http://www.cbcb.umd.edu/~hcorrada/

The research paper, "Epiviz: interactive visual analytics for functional genomics data," Florin Chelaru, Llewellyn Smith, Naomi Goldstein and Héctor Corrada Bravo, was published online Aug. 3, 2014 in Nature Methods. http://dx.doi.org/10.1038/nmeth.3038

Media Relations Contact: Abby Robinson, 301-405-5845, abbyr@umd.edu

Writer:

Melissa Brachfeld
University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, Md. 20742
http://www.cmns.umd.edu

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.

Abby Robinson | Eurek Alert!

Further reports about: DNA UMD analyze colon genomic methylation techniques undergraduate

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>