Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Amherst Engineers Make ‘Building Blocks of Chemical Industry’ From Wood While Boosting Production 40 Percent

12.01.2012
Chemical engineers at the University of Massachusetts Amherst, using a catalytic fast pyrolysis process that transforms renewable non-food biomass into petrochemicals, have developed a new catalyst that boosts the yield for five key "building blocks of the chemical industry" by 40 percent compared to previous methods.

This sustainable production process, which holds the promise of being competitive and compatible with the current petroleum refinery infrastructure, has been tested and proven in a laboratory reactor, using wood as the feedstock, the research team says.

"We think that today we can be economically competitive with crude oil production," says research team leader George Huber, an associate professor of chemical engineering at UMass Amherst and one of the country’s leading experts on catalytic pyrolysis.

Huber says his research team can take wood, grasses or other renewable biomass and create five of the six petrochemicals that serve as the building blocks for the chemical industry. They are benzene, toluene, and xylene, which are aromatics, and ethylene and propylene, which are olefins. Methanol is the only one of those six key petrochemicals not produced in that same single-step reaction.

"The ultimate significance of our research is that products of our green process can be used to make virtually all the petrochemical materials you can find. In addition, some of them can be blended into gasoline, diesel or jet fuel," says Huber.

The new process was outlined in a paper published in the Dec. 23, 2011 edition of the German Chemical Society’s journal Angewandte Chemie. It was written by Huber, Wei Fan, assistant professor of chemical engineering, and graduate students Yu-Ting Cheng, Jungho Jae and Jian Shi.

"The whole name of the game is yield," says Huber. "The question is what amount of aromatics and olefins can be made from a given amount of biomass. Our paper demonstrates that with this new gallium-zeolite catalyst we can increase the yield of those products by 40 percent. This gets us much closer to the goal of catalytic fast pyrolysis being economically viable. And we can do it all in a renewable way."

The new production process has the potential to reduce or eliminate industry’s reliance on fossil fuels to make industrial chemicals worth an estimated $400 billion annually, Huber says. The team’s catalytic fast pyrolysis technology has been licensed to New York City’s Anellotech, Inc., co-founded by Huber, which is scaling up the process to industrial size for introduction into the petrochemical industry.

In this single-step catalytic fast pyrolysis process, either wood, agricultural wastes, fast growing energy crops or other non-food biomass is fed into a fluidized-bed reactor, where this feedstock pyrolysizes, or decomposes due to heating, to form vapors. These biomass vapors then enter the team’s new gallium-zeolite (Ga-ZSM-5) catalyst, inside the same reactor, which converts vapors into the aromatics and olefins. The economic advantages of the new process are that the reaction chemistry occurs in one single reactor, the process uses an inexpensive catalyst and that aromatics and olefins are produced that can be used easily in the existing petrochemical infrastructure.

Olefins and aromatics are the building blocks for a wide range of materials. Olefins are used in plastics, resins, fibers, elastomers, lubricants, synthetic rubber, gels and other industrial chemicals. Aromatics are used for making dyes, polyurethanes, plastics, synthetic fibers and more.

George Huber | EurekAlert!
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>