Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Amherst Engineers Make ‘Building Blocks of Chemical Industry’ From Wood While Boosting Production 40 Percent

12.01.2012
Chemical engineers at the University of Massachusetts Amherst, using a catalytic fast pyrolysis process that transforms renewable non-food biomass into petrochemicals, have developed a new catalyst that boosts the yield for five key "building blocks of the chemical industry" by 40 percent compared to previous methods.

This sustainable production process, which holds the promise of being competitive and compatible with the current petroleum refinery infrastructure, has been tested and proven in a laboratory reactor, using wood as the feedstock, the research team says.

"We think that today we can be economically competitive with crude oil production," says research team leader George Huber, an associate professor of chemical engineering at UMass Amherst and one of the country’s leading experts on catalytic pyrolysis.

Huber says his research team can take wood, grasses or other renewable biomass and create five of the six petrochemicals that serve as the building blocks for the chemical industry. They are benzene, toluene, and xylene, which are aromatics, and ethylene and propylene, which are olefins. Methanol is the only one of those six key petrochemicals not produced in that same single-step reaction.

"The ultimate significance of our research is that products of our green process can be used to make virtually all the petrochemical materials you can find. In addition, some of them can be blended into gasoline, diesel or jet fuel," says Huber.

The new process was outlined in a paper published in the Dec. 23, 2011 edition of the German Chemical Society’s journal Angewandte Chemie. It was written by Huber, Wei Fan, assistant professor of chemical engineering, and graduate students Yu-Ting Cheng, Jungho Jae and Jian Shi.

"The whole name of the game is yield," says Huber. "The question is what amount of aromatics and olefins can be made from a given amount of biomass. Our paper demonstrates that with this new gallium-zeolite catalyst we can increase the yield of those products by 40 percent. This gets us much closer to the goal of catalytic fast pyrolysis being economically viable. And we can do it all in a renewable way."

The new production process has the potential to reduce or eliminate industry’s reliance on fossil fuels to make industrial chemicals worth an estimated $400 billion annually, Huber says. The team’s catalytic fast pyrolysis technology has been licensed to New York City’s Anellotech, Inc., co-founded by Huber, which is scaling up the process to industrial size for introduction into the petrochemical industry.

In this single-step catalytic fast pyrolysis process, either wood, agricultural wastes, fast growing energy crops or other non-food biomass is fed into a fluidized-bed reactor, where this feedstock pyrolysizes, or decomposes due to heating, to form vapors. These biomass vapors then enter the team’s new gallium-zeolite (Ga-ZSM-5) catalyst, inside the same reactor, which converts vapors into the aromatics and olefins. The economic advantages of the new process are that the reaction chemistry occurs in one single reactor, the process uses an inexpensive catalyst and that aromatics and olefins are produced that can be used easily in the existing petrochemical infrastructure.

Olefins and aromatics are the building blocks for a wide range of materials. Olefins are used in plastics, resins, fibers, elastomers, lubricants, synthetic rubber, gels and other industrial chemicals. Aromatics are used for making dyes, polyurethanes, plastics, synthetic fibers and more.

George Huber | EurekAlert!
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>