Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound Shown to Exert Remote Control of Brain Circuits

30.10.2008
In a twist on nontraditional uses of ultrasound, a group of neuroscientists at Arizona State University has developed pulsed ultrasound techniques that can remotely stimulate brain circuit activity.

Their findings, published in the Oct. 29 issue of the journal Public Library of Science (PLoS) One, provide insights into how low-power ultrasound can be harnessed for the noninvasive neurostimulation of brain circuits and offers the potential for new treatments of brain disorders and disease.

While it might be hard to imagine the day where doctors could treat post traumatic stress disorders, traumatic brain injury and even Alzheimer’s disease with the flip of a switch, most of us have in fact experienced some of ultrasound’s numerous applications in our daily lives. For example, ultrasound has been used in fetal and other diagnostic medical imaging, ultrasonic teeth cleaning, physiotherapies, or surgical ablation. Ultrasound also provides a multitude of other non-medical uses, including pharmaceutical manufacturing, food processing, nondestructive materials testing, sonar, communications, oceanography and acoustic mapping.

“Studies of ultrasound and its interactions with biological tissues have a rich history dating back to the late 1920s,” lead investigator William “Jamie” Tyler points out. “Several research groups have, for more than a half-century, demonstrated that ultrasound can produce changes in excitable tissues, such as nerve and/or muscle, but detailed studies in neurons at the cellular level have been lacking.”

“We were able to unravel how ultrasound can stimulate the electrical activity of neurons by optically monitoring the activity of neuronal circuits, while we simultaneously propagated low-intensity, low-frequency ultrasound through brain tissues,” says Tyler, assistant professor of neurobiology and bioimaging in the School of Life Sciences in the College of Liberal Arts and Sciences.

Led by Tyler, the ASU research group discovered that remotely delivered low intensity, low frequency ultrasound (LILFU) increased the activity of voltage-gated sodium and calcium channels in a manner sufficient to trigger action potentials and the release of neurotransmitter from synapses. Since these processes are fundamental to the transfer of information among neurons, the authors pose that this type of ultrasound provides a powerful new tool for modulating the activity of neural circuits.

“Many of the stimulation methods used by neuroscientists require the use and implantation of stimulating electrodes, requiring direct contact with nervous tissue or the introduction of exogenous proteins, such as those used for the light-activation of neurons,” Tyler explains.

The search for new types of noninvasive neurostimulation methods led them to revisit ultrasound.

“We were quite surprised to find that ultrasound at power levels lower than those typically used in routine diagnostic medical imaging procedures could produce an increase in the activity of neurons while higher power levels produced very little effect on their activity,” Tyler says.

Other neuroscientists and engineers have also been rapidly developing new neurostimulation methods for controlling nervous system activity and several approaches show promise for the treatment of a wide variety of nervous system disorders. For example, Deep Brain Stimulation (DBS) and Vagal Nerve Stimulation (VNS) have been shown to be effective in the management of psychiatric disorders such as depression, bipolar disorders, post-traumatic stress disorder, and drug addition, as well as for therapies of neurological diseases such as Parkinson’s disease, Alzheimer’s disease, Tourette Syndrome, epilepsy, dystonia, stuttering, tinnitus, recovery of cognitive and motor function following stroke, and chronic pain. Up until now, these two techniques have captured the attention of physicians and scientists; however, these therapies still pose risks to patients because they require the surgical implantation of stimulating electrodes. Thus, these types of therapies are often only available to patients presenting the worst of prognoses.

One prior stumbling block to using ultrasound noninvasively in the brain has been the skull. However, the acoustic frequencies utilized by Tyler and his colleagues to construct their pulsed ultrasound waveforms, overlap with a frequency range where optimal energy gains are achieved between transcranial transmission and brain absorption of ultrasound – which allows the ultrasound to penetrate bone and yet prevent damage to the soft tissues. Their findings are supported by other studies examining the potential of high-intensity focused ultrasound for ablating brain tissues, where it was shown that low-frequency ultrasound could be focused through human skulls.

When asked about the potential of using his groups’ methods to remotely control brain activity, Tyler says: “One might be able to envision potential applications ranging from medical interventions to use in video gaming or the creation of artificial memories along the lines of Arnold Schwarzenegger’s character in ‘Total Recall.’ Imagine taking a vacation without actually going anywhere?”

“Obviously, we need to conduct further research and development, but one of the most exhilarating prospects is that low intensity, low frequency ultrasound permit deep-brain stimulation procedures without requiring exogenous proteins or surgically implanted medical devices,” he adds.

Tyler and the other ASU researchers will now focus on further characterization of the influence of ultrasound on intact brain circuits and translational research, taking low intensity ultrasound from the lab into pre-clinical trials and treatment of neurological diseases.

William (Jamie) Tyler | Newswise Science News
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>