Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound improves stem cell transplants

06.09.2011
Transplantation of haematopoietic stem cells is an effective treatment for patients with malignant blood diseases. The composition and quality of the transplanted cells are crucial to the outcome. Researchers from Lund University, Sweden, have now developed a method to improve the quality of the transplanted cells using ultrasound for cell separation.

For patients with blood cancer, a blood stem cell transplant is often the only treatment that can cure the disease. The quality of the transplanted blood stem cells and the choice and composition of the transplanted cells can be crucial.

Current methods of collecting and processing stem cell products leave a lot to be desired. Recent results from Lund University indicate that it may be possible to considerably improve the quality of the blood stem cell product by using a method known as acoustic cell separation.

“The method was developed in the field of microtechnology and builds on basic engineering research from Lund University”, explains Professor Thomas Laurell, research group leader at the Faculty of Engineering. The method is expected to facilitate improvements in the processing of blood stem cells.

Associate Professor Stefan Scheding, senior consultant at the Department of Haematology at Skåne University Hospital and research group leader at the Stem Cell Centre at Lund University, is in charge of the preclinical development of the new method, which aims to effectively separate and possibly remove or concentrate cell populations which are normally found in standard blood stem cells products. The first step has been to show that the method works, by separating out platelets from stem cell products.

“Our hope is that it will become possible to produce the optimal stem cell product for each individual transplant patient”, says Stefan Scheding. “This would give us a good chance of improving the treatment of patients who would otherwise be at risk of suffering from serious transplant complications, such as graft-versus-host disease* and infections. By optimising the quality of the transplanted cells, it may even be possible to better fight the leukaemia cells that remain in the body despite the transplant treatment”, he explains.

The project is part of the research programme CellCare, which is funded by the Swedish Governmental Agency for Innovation Systems (Vinnova) and coordinated by Thomas Laurell.

Contact details:
Thomas Laurell, Thomas.Laurell@elmat.lth.se, +46 46 222 75 40 

Stefan Scheding, stefan.scheding@med.lu.se, +46 46 222 33 31
* graft-versus-host disease: a rejection reaction in some transplants such as bone marrow transplants

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0023074

Full bibliographic information
Dykes J, Lenshof A, Åstrand-Grundström I-B, Laurell T, Scheding S (2011) Efficient Removal of Platelets from Peripheral Blood Progenitor Cell Products Using a Novel Micro-Chip Based Acoustophoretic Platform. PLoS ONE 6(8): e23074. doi:10.1371/journal.pone.0023074
The scientific article has been published in the open access journal PLoS ONE: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0023074
Notes for editors
Contact details:
Thomas Laurell, Thomas.Laurell@elmat.lth.se, +46 46 222 75 40 

Stefan Scheding, stefan.scheding@med.lu.se, +46 46 222 33 31

Ingela Bjoerck | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>