Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound improves stem cell transplants

06.09.2011
Transplantation of haematopoietic stem cells is an effective treatment for patients with malignant blood diseases. The composition and quality of the transplanted cells are crucial to the outcome. Researchers from Lund University, Sweden, have now developed a method to improve the quality of the transplanted cells using ultrasound for cell separation.

For patients with blood cancer, a blood stem cell transplant is often the only treatment that can cure the disease. The quality of the transplanted blood stem cells and the choice and composition of the transplanted cells can be crucial.

Current methods of collecting and processing stem cell products leave a lot to be desired. Recent results from Lund University indicate that it may be possible to considerably improve the quality of the blood stem cell product by using a method known as acoustic cell separation.

“The method was developed in the field of microtechnology and builds on basic engineering research from Lund University”, explains Professor Thomas Laurell, research group leader at the Faculty of Engineering. The method is expected to facilitate improvements in the processing of blood stem cells.

Associate Professor Stefan Scheding, senior consultant at the Department of Haematology at Skåne University Hospital and research group leader at the Stem Cell Centre at Lund University, is in charge of the preclinical development of the new method, which aims to effectively separate and possibly remove or concentrate cell populations which are normally found in standard blood stem cells products. The first step has been to show that the method works, by separating out platelets from stem cell products.

“Our hope is that it will become possible to produce the optimal stem cell product for each individual transplant patient”, says Stefan Scheding. “This would give us a good chance of improving the treatment of patients who would otherwise be at risk of suffering from serious transplant complications, such as graft-versus-host disease* and infections. By optimising the quality of the transplanted cells, it may even be possible to better fight the leukaemia cells that remain in the body despite the transplant treatment”, he explains.

The project is part of the research programme CellCare, which is funded by the Swedish Governmental Agency for Innovation Systems (Vinnova) and coordinated by Thomas Laurell.

Contact details:
Thomas Laurell, Thomas.Laurell@elmat.lth.se, +46 46 222 75 40 

Stefan Scheding, stefan.scheding@med.lu.se, +46 46 222 33 31
* graft-versus-host disease: a rejection reaction in some transplants such as bone marrow transplants

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0023074

Full bibliographic information
Dykes J, Lenshof A, Åstrand-Grundström I-B, Laurell T, Scheding S (2011) Efficient Removal of Platelets from Peripheral Blood Progenitor Cell Products Using a Novel Micro-Chip Based Acoustophoretic Platform. PLoS ONE 6(8): e23074. doi:10.1371/journal.pone.0023074
The scientific article has been published in the open access journal PLoS ONE: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0023074
Notes for editors
Contact details:
Thomas Laurell, Thomas.Laurell@elmat.lth.se, +46 46 222 75 40 

Stefan Scheding, stefan.scheding@med.lu.se, +46 46 222 33 31

Ingela Bjoerck | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>